scholarly journals Analysis of a fractional-order chaotic system in the context of the Caputo fractional derivative via bifurcation and Lyapunov exponents

2021 ◽  
Vol 33 (1) ◽  
pp. 101275
Author(s):  
Ndolane Sene
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Ndolane Sene

This paper is presented on the theory and applications of the fractional-order chaotic system described by the Caputo fractional derivative. Considering the new fractional model, it is important to establish the presence or absence of chaotic behaviors. The Lyapunov exponents in the fractional context will be our fundamental tool to arrive at our conclusions. The variations of the model’s parameters will generate chaotic behavior, in general, which will be established using the Lyapunov exponents and bifurcation diagrams. For the system’s phase portrait, we will present and apply an interesting fractional numerical discretization. For confirmation of the results provided in this paper, the circuit schematic is drawn and simulated. As it will be observed, the results obtained after the simulation of the numerical scheme and with the Multisim are in good agreement.


2017 ◽  
Vol 22 (4) ◽  
pp. 503-513 ◽  
Author(s):  
Fei Wang ◽  
Yongqing Yang

This paper investigates fractional order Barbalat’s lemma and its applications for the stability of fractional order nonlinear systems with Caputo fractional derivative at first. Then, based on the relationship between Caputo fractional derivative and Riemann-Liouville fractional derivative, fractional order Barbalat’s lemma with Riemann-Liouville derivative is derived. Furthermore, according to these results, a set of new formulations of Lyapunov-like lemmas for fractional order nonlinear systems are established. Finally, an example is presented to verify the theoretical results in this paper.


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050070 ◽  
Author(s):  
CONG WU

In this paper, we work on a general comparison principle for Caputo fractional-order ordinary differential equations. A full result on maximal solutions to Caputo fractional-order systems is given by using continuation of solutions and a newly proven formula of Caputo fractional derivatives. Based on this result and the formula, we prove a general fractional comparison principle under very weak conditions, in which only the Caputo fractional derivative is involved. This work makes up deficiencies of existing results.


2010 ◽  
Vol 43 (4) ◽  
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra

AbstractIn this paper we investigate the existence of solutions of a class of partial impulsive hyperbolic differential inclusions involving the Caputo fractional derivative. Our main tools are appropriate fixed point theorems from multivalued analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ndolane Sene

This paper presents a modified chaotic system under the fractional operator with singularity. The aim of the present subject will be to focus on the influence of the new model’s parameters and its fractional order using the bifurcation diagrams and the Lyapunov exponents. The new fractional model will generate chaotic behaviors. The Lyapunov exponents’ theories in fractional context will be used for the characterization of the chaotic behaviors. In a fractional context, the phase portraits will be obtained with a predictor-corrector numerical scheme method. The details of the numerical scheme will be presented in this paper. The numerical scheme will be used to analyze all the properties addressed in this present paper. The Matignon criterion will also play a fundamental role in the local stability of the presented model’s equilibrium points. We will find a threshold under which the stability will be removed and the chaotic and hyperchaotic behaviors will be generated. An adaptative control will be proposed to correct the instability of the equilibrium points of the model. Sensitive to the initial conditions, we will analyze the influence of the initial conditions on our fractional chaotic system. The coexisting attractors will also be provided for illustrations of the influence of the initial conditions.


Author(s):  
Sunday Emmanuel Fadugba

This paper presents the Mellin transform for the solution of the fractional order equations. The Mellin transform approach occurs in many areas of applied mathematics and technology. The Mellin transform of fractional calculus of different flavours; namely the Riemann-Liouville fractional derivative, Riemann-Liouville fractional integral, Caputo fractional derivative and the Miller-Ross sequential fractional derivative were obtained. Three illustrative examples were considered to discuss the applications of the Mellin transform and its fundamental properties. The results show that the Mellin transform is a good analytical method for the solution of fractional order equations.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 95-105 ◽  
Author(s):  
Imtiaz Ahmad ◽  
Hijaz Ahmad ◽  
Mustafa Inc ◽  
Shao-Wen Yao ◽  
Bandar Almohsen

In this article, we presented an efficient local meshless method for the numerical treatment of two term time fractional-order multi-dimensional diffusion PDE. The demand of meshless techniques increment because of its meshless nature and simplicity of usage in higher dimensions. This technique approximates the solu?tion on set of uniform and scattered nodes. The space derivatives of the models are discretized by the proposed meshless procedure though the time fractional part is discretized by Liouville-Caputo fractional derivative. The numerical re?sults are obtained for 1-, 2- and 3-D cases on rectangular and non-rectangular computational domains which verify the validity, efficiency and accuracy of the method.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650046 ◽  
Author(s):  
Xiaoran Lin ◽  
Shangbo Zhou ◽  
Hua Li

In this paper, chaos in complex-order Chua’s system and its chaotic synchronization for secure communication are studied based on the fractional derivative investigated. Chaos in complex-order Chua’s system is illustrated by presenting its waveform graphs, states diagrams and bifurcation graphs. The dynamic behaviors in the complex-order Chua’s system and time-delayed Chua’s system are compared. In addition, the largest Lyapunov exponents of normal and time-delayed Chua’s systems are calculated and verified by numerical simulations. The experiment indicates that the chaos in such Chua’s system can achieve two channel communications.


Sign in / Sign up

Export Citation Format

Share Document