Microstructural, thermal and mechanical properties of HVOF sprayed Ni–Al-based bond coatings on stainless steel substrate

2008 ◽  
Vol 204 (1-3) ◽  
pp. 221-230 ◽  
Author(s):  
O. Culha ◽  
E. Celik ◽  
N.F. Ak Azem ◽  
I. Birlik ◽  
M. Toparli ◽  
...  
2017 ◽  
Vol 36 (8) ◽  
pp. 855-861
Author(s):  
Yong Pan ◽  
Junwei Cui ◽  
Weixin Lei ◽  
Jie Zhou ◽  
Zengsheng Ma

AbstractEffects of heat treatment on the mechanical properties of Ni films on 430 stainless steel substrate were investigated. The Ni films were annealed at heat treatment temperatures ranging from 0 °C to 800 °C for 2 h. The surface morphology, composition, and texture orientation of Ni films were studied by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction. The load–indentation depth curves of Ni films before and after heat treatment were measured by using nanoindentation method. In conjunction with finite element modeling and dimensional analysis, the stress–strain relationships of Ni films on 430 stainless steel substrate at different temperatures are successfully obtained by using a power-law hardening model.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6948
Author(s):  
Andrey Filippov ◽  
Nikolay Shamarin ◽  
Evgeny Moskvichev ◽  
Nikolai Savchenko ◽  
Evgeny Kolubaev ◽  
...  

Electron beam additive wire-feed deposition of Cu-7.5wt.%Al bronze on a stainless-steel substrate has been carried out at heat input levels 0.21, 0.255, and 0.3 kJ/mm. The microstructures formed at 0.21 kJ/mm were characterized by the presence of both zigzagged columnar and small equiaxed grains with 10% of Σ3 annealing twin grain boundaries. No equiaxed grains were found in samples obtained at 0.255 and 0.3 kJ/mm. The zigzagged columnar ones were only retained in samples obtained at 0.255 kJ/mm. The fraction of Σ3 boundaries reduced at higher heat input values to 7 and 4%, respectively. The maximum tensile strength was achieved on samples obtained with 0.21 kJ/mm as tested with a tensile axis perpendicular to the deposited wall’s height. More than 100% elongation-to-fracture was achieved when testing the samples obtained at 0.3 kJ/mm (as tested with a tensile axis coinciding with the wall’s height).


2021 ◽  
Vol 63 (3) ◽  
pp. 209-218
Author(s):  
Hua Zhang ◽  
Sihan Zheng ◽  
Yue Wang ◽  
QiLiang Li ◽  
Jie Tao ◽  
...  

Abstract The effect of stress corrosion on the mechanical properties of the coating in the zinc coating/304 stainless steel substrate system was investigated by three-point bending, slow strain rate tensile (SSRT) and nano-indentation tests. Studies have shown that fracture toughness was improved when the coating was thick but weakened when the coating was thin. At varied coating thicknesses (80 μm, 160 μm, 240 μm, 320 μm, 400 μm), the decline rates of the fracture toughness were 77.48 %, 71.82 %, 66.67 %, 55.48 % and 51.52 %, respectively, and those for the critical strain of crack initiation were 94.97 %, 91.88 %, 88.42 %, 76.19 % and 74.33 %, respectively. In addition, simulations were made to analyze the crack propagation of zinc coating in coating/substrate system under tensile loading by ABAQUS, which proved the accuracy of the experiment.


2012 ◽  
Vol 499 ◽  
pp. 372-377
Author(s):  
C.R. Zhu ◽  
B.H. Lv ◽  
Ju Long Yuan

To improve the machining efficiency as well as surface roughness, a resin-bonded fixed abrasive tool is developed for lapping process of stainless steel substrate. To optimize the lapping ability of the fixed abrasive tool, the influences of bond material concentration on the mechanical properties of fixed abrasive lapping tool, including structure hardness, shear strength, the water-absorbing capacity and modulus of elasticity in compression are investigated. The micro structure of tools is also observed. Tools made of #1000 SiC abrasive and resin with different concentrations is employed in the tests. It is found, the hardness, shear strength, and modulus of elasticity in compression reach highest value, as the 35%wt bond material are used. The water-absorbing capacity increases as the bond material concentration decreases. It is judged from the SEM images that the number of pores in tool with 35%wt bond material is at the most.


2013 ◽  
Vol 133 (4) ◽  
pp. 126-127 ◽  
Author(s):  
Shota Hosokawa ◽  
Motoaki Hara ◽  
Hiroyuki Oguchi ◽  
Hiroki Kuwano

2020 ◽  
Vol 32 (4) ◽  
pp. 042015
Author(s):  
Alireza Mostajeran ◽  
Reza Shoja-Razavi ◽  
Morteza Hadi ◽  
Mohammad Erfanmanesh ◽  
Hadi Karimi

Sign in / Sign up

Export Citation Format

Share Document