scholarly journals Influence of Heat Treatment on the Mechanical Properties of Ni Films on 430 Stainless Steel Substrate

2017 ◽  
Vol 36 (8) ◽  
pp. 855-861
Author(s):  
Yong Pan ◽  
Junwei Cui ◽  
Weixin Lei ◽  
Jie Zhou ◽  
Zengsheng Ma

AbstractEffects of heat treatment on the mechanical properties of Ni films on 430 stainless steel substrate were investigated. The Ni films were annealed at heat treatment temperatures ranging from 0 °C to 800 °C for 2 h. The surface morphology, composition, and texture orientation of Ni films were studied by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction. The load–indentation depth curves of Ni films before and after heat treatment were measured by using nanoindentation method. In conjunction with finite element modeling and dimensional analysis, the stress–strain relationships of Ni films on 430 stainless steel substrate at different temperatures are successfully obtained by using a power-law hardening model.

2012 ◽  
Vol 490-495 ◽  
pp. 3486-3490
Author(s):  
Qiang Yu ◽  
Zhen Chen ◽  
Zhong Cheng Guo

In order to prepare a new type of anode material, stainless steel was selected as substrate material. The β-PbO2 coating on stainless steel substrate was prepared under the appropriate plating solution, and the PbO2-MnO2 coating was prepared with thermal decomposition. The crystal structure was determined by X-ray diffraction; Surface morphology was test by Scanning Electron Microscopy; the energy spectrum was used to determine element mass-fraction and the ratio of atomic number of the coatings.


2017 ◽  
Vol 753 ◽  
pp. 218-221
Author(s):  
Awad Eisa Gaib Alla Mohamed ◽  
Khairi Abdulsalam

In this paper the effect of chromium element on some mechanical properties of gray cast iron is studied .The work was divided in to four categories, each category has three samples; each sample has three different chromium content 0.0%, 1.7%, 3.7%. The mechanical properties were investigated (hardness and impact) before and after the heat treatment. The heat treatment was carried out for period of 12 minutes at two different temperatures. The results confirmed that durability, toughness, and hardness are proportional to the chromium content. The ultimate aim of this research is to enhance the mechanical properties of gray cast iron by adding chromium element.


Author(s):  
Abdelyamine Boukhobza ◽  
Kamel Fedaoui ◽  
Lahcene Mebarki ◽  
Karim Arar ◽  
Lazhar Baroura

In this article, the 75Fe3C-20W-5Co alloy is developed by the powder metallurgy technique in order to study the microstructure and the mechanical properties obtained after solid phase sintering. The mechanical grinding of the mixture of these Fe3C-W-Co powders lasted 6 hours.The powders were compressed by cold isostatic pressing (CIP) at different compaction pressures (5MPa, 10MPa, 15MPa and 18MPa). The green compacts obtained were sintered at a temperature equal to 1350 °C, followed by a heat treatment at different temperatures (850 °C, 950 °C and 1100 °C). The samples were then cooled in different baths (oil and water). The characterization of this sintered steel alloy was carried out by X-ray diffraction (XRD) and with an optical microscope. The results reveal that the structure of these sintered alloys consisted of the Fe matrix phase and the W-Co solid solution phase. The compaction pressure influences the number and size of the pores. Hardness and wear resistance increase with increasing compaction pressure.


2005 ◽  
Vol 284-286 ◽  
pp. 7-10 ◽  
Author(s):  
Racquel Z. LeGeros ◽  
Dindo Q. Mijares ◽  
J. Park ◽  
X.-F. Chang ◽  
I. Khairoun ◽  
...  

Our earlier studies showed that several ions inhibit the crystal growth of apatite and promote the formation of amorphous calcium phosphates (ACP). These ions include: magnesium (Mg), zinc (Zn), stannous (Sn), ferrous (Fe), carbonate (CO3), pyrophosphate (P2O7). The purpose of this study was to investigate the effect of combination of these ions (e.g., Mg & CO3, Mg & P2O7, Mg & Zn, etc) on the formation and stability of ACP. ACP compounds containing the different ions were prepared at 25 and 37oC according to the method we previously described. Chemical stability was investigated by suspending the different ACP preparations in solutions with or without inhibitory ions. Thermal stability was determined by sintering the ACP at different temperatures. Dissolution properties were determined in acidic buffer. The ACP before and after chemical or thermal treatment were analyzed using X-ray diffraction, infrared spectroscopy, and thermogravimetry. Results showed synergistic effects of inhibitory ions on the formation of ACP. ACP materials, regardless of their composition, remained amorphous even after heat treatment at 400oC. Transformation of ACP to other calcium phosphate phases depended on the pH and on the solution composition.


2011 ◽  
Vol 399-401 ◽  
pp. 760-765 ◽  
Author(s):  
Xue Ting He ◽  
Jie Tao ◽  
Hai Jun Tao ◽  
Zuo Guo Bao

Ti film sputtered on flexible stainless steel substrate that rolled by 20-high Sendzimir Mill, was anodized in ethylene glycol bath in the presence of 0.5 wt.% NH4F and 3 vol.% H2O at a high voltage of 60 V. High-aspect-ratio porous-nanotube arrays (PNTAs) of TiO2 with the tubes length of 6.2 µm were quickly prepared from Ti film, at the high growth rate of 20.7 nm·s-1. Then the morphology and structure of PNTAs were characterized by field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD), respectively. Finally, a DSSC with the photoanode of PNTAs exhibited a performance of Jsc= 2.40 mA·cm-2, Voc= 0.79V, FF = 0.57 and η = 1.08%.


2012 ◽  
Vol 538-541 ◽  
pp. 359-362
Author(s):  
Qing Mei Jia ◽  
Yong Hong Tang ◽  
Ke Nan Meng

The SiO2-ZrO2-Al2O3-Cr2O3 film is coated on the surface of stainless steel using analytical reagent TEOS, ZrOCl2·8H2O, Al(NO3)3·9H2O and Cr(NO3)3·9H2O as precursor and basing on mole ratio to calculate through Sol-gel method. The phase transformation behavior,erosion resistance,thermal shock resistance and abrasion resistance of ceramic coating by different heat treatment are studied. The results show that: 1)The SiO2-ZrO2-Al2O3-Cr2O3 gel coatings has non-crystalline structure after the treatment at 700°C and 800°C. New substance is not created below 700°C 2) The stainless steel substrate with ceramic coating has a higher erosion resistance at high temperature (700°Cand 800°C)than that without coating.3) Thermal shock resistance of the samples treated in 700°C is the best which has reached within 17-21cycles (900°C, air cooling). 4) The stainless steel substrate with ceramic coating has a higher abrasion resistance than that without coating. The samples treated at 700°Cand 800°C have the best abrasion resistance.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6948
Author(s):  
Andrey Filippov ◽  
Nikolay Shamarin ◽  
Evgeny Moskvichev ◽  
Nikolai Savchenko ◽  
Evgeny Kolubaev ◽  
...  

Electron beam additive wire-feed deposition of Cu-7.5wt.%Al bronze on a stainless-steel substrate has been carried out at heat input levels 0.21, 0.255, and 0.3 kJ/mm. The microstructures formed at 0.21 kJ/mm were characterized by the presence of both zigzagged columnar and small equiaxed grains with 10% of Σ3 annealing twin grain boundaries. No equiaxed grains were found in samples obtained at 0.255 and 0.3 kJ/mm. The zigzagged columnar ones were only retained in samples obtained at 0.255 kJ/mm. The fraction of Σ3 boundaries reduced at higher heat input values to 7 and 4%, respectively. The maximum tensile strength was achieved on samples obtained with 0.21 kJ/mm as tested with a tensile axis perpendicular to the deposited wall’s height. More than 100% elongation-to-fracture was achieved when testing the samples obtained at 0.3 kJ/mm (as tested with a tensile axis coinciding with the wall’s height).


2021 ◽  
Vol 63 (3) ◽  
pp. 209-218
Author(s):  
Hua Zhang ◽  
Sihan Zheng ◽  
Yue Wang ◽  
QiLiang Li ◽  
Jie Tao ◽  
...  

Abstract The effect of stress corrosion on the mechanical properties of the coating in the zinc coating/304 stainless steel substrate system was investigated by three-point bending, slow strain rate tensile (SSRT) and nano-indentation tests. Studies have shown that fracture toughness was improved when the coating was thick but weakened when the coating was thin. At varied coating thicknesses (80 μm, 160 μm, 240 μm, 320 μm, 400 μm), the decline rates of the fracture toughness were 77.48 %, 71.82 %, 66.67 %, 55.48 % and 51.52 %, respectively, and those for the critical strain of crack initiation were 94.97 %, 91.88 %, 88.42 %, 76.19 % and 74.33 %, respectively. In addition, simulations were made to analyze the crack propagation of zinc coating in coating/substrate system under tensile loading by ABAQUS, which proved the accuracy of the experiment.


Sign in / Sign up

Export Citation Format

Share Document