Size effect affected mechanical properties and formability in micro plane strain deformation process of pure nickel

2018 ◽  
Vol 258 ◽  
pp. 319-325 ◽  
Author(s):  
Chuanjie Wang ◽  
Haiyang Wang ◽  
Shaoxi Xue ◽  
Gang Chen ◽  
Yibin Wang ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2323
Author(s):  
Yubing Du ◽  
Zhiqing Zhao ◽  
Qiang Xiao ◽  
Feiting Shi ◽  
Jianming Yang ◽  
...  

To explore the basic mechanical properties and size effects of recycled aggregate concrete (RAC) with different substitution ratios of coarse recycled concrete aggregates (CRCAs) to replace natural coarse aggregates (NCA), the failure modes and mechanical parameters of RAC under different loading conditions including compression, splitting tensile resistance and direct shear were compared and analyzed. The conclusions drawn are as follows: the failure mechanisms of concrete with different substitution ratios of CRCAs are similar; with the increase in substitution ratio, the peak compressive stress and peak tensile stress of RAC decrease gradually, the splitting limit displacement decreases, and the splitting tensile modulus slightly increases; with the increase in the concrete cube’s side length, the peak compressive stress of RAC declines gradually, but the integrity after compression is gradually improved; and the increase in the substitution ratio of the recycled aggregate reduces the impact of the size effect on the peak compressive stress of RAC. Furthermore, an influence equation of the coupling effect of the substitution ratio and size effect on the peak compressive stress of RAC was quantitatively established. The research results are of great significance for the engineering application of RAC and the strength selection of RAC structure design.


2014 ◽  
Vol 887-888 ◽  
pp. 824-829
Author(s):  
Qing Fang Lv ◽  
Ji Hong Qin ◽  
Ran Zhu

Laminated veneer lumber is taken as an object of study, and use LVL specimens of different sizes for compression test and tensile test. The goal of the experiment is to investigate the size effect on compressive strength and tensile strength as well as the influence of the secondary glued laminated face, which appears in the secondary molding processes. The results show that both compressive strength and tensile strength have the size effect apparently and the existence of the secondary glued laminated face lower the compressive strength of LVL specimens. Afterwards, the relationship between compressive strength and volume along with tensile strength and area are obtained by the test results.


2019 ◽  
Vol 770 ◽  
pp. 608-615 ◽  
Author(s):  
Hongsheng Chen ◽  
Haibo Wang ◽  
Qingzhu Sun ◽  
Chongsheng Long ◽  
Tianguo Wei ◽  
...  

2017 ◽  
Vol 27 (8) ◽  
pp. 1131-1155 ◽  
Author(s):  
Zhiwei Zhou ◽  
Wei Ma ◽  
Shujuan Zhang ◽  
Cong Cai ◽  
Yanhu Mu ◽  
...  

A series of multistage triaxial compression, creep, and stress relaxation tests were conducted on frozen loess at the temperature of −6℃ in order to study the damage evolution and recrystallization enhancement of mechanical properties during deformation process. The effect of strain rate, confining pressure, and hydrostatic stress history in the degradation laws of mechanical properties is investigated further. The strain rate has a significant influence on the stress–strain curve which dominates the evolution trend of mechanical properties. The mechanical behaviors (strength, stiffness, and viscosity) of frozen loess all exhibit evident response for the consolidation and pressure melting phenomenon caused by the confining pressure. The multistage loading tests under different hydrostatic stresses are capable of differentiating the development characteristics of mechanical properties during axial loading and hydrostatic compression process, respectively. The testing results indicated that the recrystallization of the ice particle in the frozen soils is an important microscopic factor for enhancement behaviors of mechanical parameters during the deformation process. This strengthening degree of mechanical properties is determined by temperature, duration time, deformation degree, and stress state during the recrystallization process. The phase transformation led by pressure melting and ice recrystallization is a nonnegligible changing pattern of frozen soils microstructure, which has apparent role in the damage evolution of mechanical properties.


2005 ◽  
Vol 488-489 ◽  
pp. 185-188 ◽  
Author(s):  
Ping Yang ◽  
Zude Zhao ◽  
Li Meng ◽  
Xueping Ren ◽  
Shao Dong Huang

Depending on its initial texture and external strain condition differences in deformation mechanisms, kinetics of dynamic recrystallization or even superplastic behaviors may emerge in magnesium alloys leading to distinct microstructure and texture evolutions. When imposed strain condition is altered, e.g. from plane strain compression to rolling or uniaxial compression, the deformation anisotropy will decrease in different rates and basal slip and {1012} twinning will dominate deformation process. This work examines this strain sensibility by inspecting the σ-ε curves, microstructures and textures in a quasi plane-strain compressed ZK60 alloy and compares the results with those of AZ31 alloy compressed in channel die.


2005 ◽  
Vol 290 ◽  
pp. 86-93 ◽  
Author(s):  
Tomasz Sadowski ◽  
Sylwester Samborski ◽  
Zdzislaw Librant

The paper deals with the experimental method of the mechanical properties estimation at the beginning of deformation process (elastic behaviour) of the material as well as during the whole deformation stages. The idea of the method results from the observation of the loading and unloading process of the material and analysis of the strain stage.


Sign in / Sign up

Export Citation Format

Share Document