The Zinc Center Influences the Redox and Thermodynamic Properties of Escherichia coli Thioredoxin 2

2009 ◽  
Vol 386 (1) ◽  
pp. 60-71 ◽  
Author(s):  
Hayat El Hajjaji ◽  
Mireille Dumoulin ◽  
André Matagne ◽  
Didier Colau ◽  
Goedele Roos ◽  
...  
2019 ◽  
Author(s):  
Ningke Hou ◽  
Zhenzhen Yan ◽  
Kaili Fan ◽  
Huanjie Li ◽  
Rui Zhao ◽  
...  

AbstractReactive sulfane sulfur species such as hydrogen polysulfide and organic persulfide are newly recognized as normal cellular components, involved in signaling and protecting cells from oxidative stress. Their production is extensively studied, but their removal is less characterized. Herein, we showed that reactive sulfane sulfur is toxic at high levels, and it is mainly removed via reduction by thioredoxin and glutaredoxin with the release of H2S in Escherichia coli. OxyR is best known to respond to H2O2, and it also played an important role in responding to reactive sulfane sulfur under both aerobic and anaerobic conditions. It was modified by hydrogen polysulfide to OxyR C199-SSH, which activated the expression of thioredoxin 2 and glutaredoxin 1. This is a new type of OxyR modification. Bioinformatics analysis showed that OxyRs are widely present in bacteria, including strict anaerobic bacteria. Thus, the OxyR sensing of reactive sulfane sulfur may represent a conserved mechanism for bacteria to deal with sulfane sulfur stress.


Biochemistry ◽  
1995 ◽  
Vol 34 (3) ◽  
pp. 792-800 ◽  
Author(s):  
Jarmo Kapyla ◽  
Teppo Hyytia ◽  
Reijo Lahti ◽  
Adrian Goldman ◽  
Alexander A. Baykov ◽  
...  

2018 ◽  
Author(s):  
Aline Leonet ◽  
Jérôme Delroisse ◽  
Christopher Schuddinck ◽  
Ruddy Wattiez ◽  
Michel Jangoux ◽  
...  

ABSTRACTChromatographic fractions of a rough extract of echinoid spawn (REES) has been demonstrated to efficiently induce oocyte maturation in aspidochirote holothuroids. The method is so efficient that it is now used in holothuriculture to get fertilised eggs even outside the reproductive period of the aquacultured species. We here isolate and identify from echinoid spawns the molecule responsible for the induction of the oocyte maturation in the Mediterranean holothuroid Holothuria tubulosa and the Indo-Pacific Holothuria scabra. The use of proteinase K and dialysing membranes indicates that the active molecule is a protein with a molecular weight superior to 12,000 kDa. The active molecule has been isolated on G-100 Sephadex chromatography column. Active chromatographic fractions include seven proteins identified with nanoLC-MS/MS technique. One of them, identify as a thioredoxin-2 and to which the name Trx-REES has been given, leads up to levels of maturation similar to those obtained with the REES and with a commercial thioredoxin extracted from Escherichia coli. Occurrence of thioredoxin in REES was confirmed by immunoblot analysis, and the maturation-inducing properties of thioredoxin were positively checked in using anti-thioredoxin antibodies. A peptide of 6 AAs corresponding to the active site of Trx-REES, composed of WCNPCK, was synthesised and its efficiency in holothuroid oocyte maturation tested. At some concentrations, the peptide was 1.2 times more active than the REES.


1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
Manfred E. Bayer

Bacterial viruses adsorb specifically to receptors on the host cell surface. Although the chemical composition of some of the cell wall receptors for bacteriophages of the T-series has been described and the number of receptor sites has been estimated to be 150 to 300 per E. coli cell, the localization of the sites on the bacterial wall has been unknown.When logarithmically growing cells of E. coli are transferred into a medium containing 20% sucrose, the cells plasmolize: the protoplast shrinks and becomes separated from the somewhat rigid cell wall. When these cells are fixed in 8% Formaldehyde, post-fixed in OsO4/uranyl acetate, embedded in Vestopal W, then cut in an ultramicrotome and observed with the electron microscope, the separation of protoplast and wall becomes clearly visible, (Fig. 1, 2). At a number of locations however, the protoplasmic membrane adheres to the wall even under the considerable pull of the shrinking protoplast. Thus numerous connecting bridges are maintained between protoplast and cell wall. Estimations of the total number of such wall/membrane associations yield a number of about 300 per cell.


Author(s):  
Manfred E. Bayer

The first step in the infection of a bacterium by a virus consists of a collision between cell and bacteriophage. The presence of virus-specific receptors on the cell surface will trigger a number of events leading eventually to release of the phage nucleic acid. The execution of the various "steps" in the infection process varies from one virus-type to the other, depending on the anatomy of the virus. Small viruses like ØX 174 and MS2 adsorb directly with their capsid to the bacterial receptors, while other phages possess attachment organelles of varying complexity. In bacteriophages T3 (Fig. 1) and T7 the small conical processes of their heads point toward the adsorption site; a welldefined baseplate is attached to the head of P22; heads without baseplates are not infective.


Author(s):  
A.J. Verkleij

Freeze-fracturing splits membranes into two helves, thus allowing an examination of the membrane interior. The 5-10 rm particles visible on both monolayers are widely assumed to be proteinaceous in nature. Most membranes do not reveal impressions complementary to particles on the opposite fracture face, if the membranes are fractured under conditions without etching. Even if it is considered that shadowing, contamination or fracturing itself might obscure complementary pits', there is no satisfactory explanation why under similar physical circimstances matching halves of other membranes can be visualized. A prominent example of uncomplementarity is found in the erythrocyte manbrane. It is wall established that band 3 protein and possibly glycophorin represents these nonccmplanentary particles. On the other hand a number of membrane types show pits opposite the particles. Scme well known examples are the ";gap junction',"; tight junction, the luminal membrane of the bladder epithelial cells and the outer membrane of Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document