scholarly journals How does lubricant viscosity affect the wear behaviour of VitE-XLPE articulated against CoCr?

Author(s):  
Göksu Kandemir ◽  
Simon Smith ◽  
Jinju Chen ◽  
Thomas J. Joyce
2016 ◽  
Vol 3 (10) ◽  
pp. 150637 ◽  
Author(s):  
A. R. Warmuth ◽  
W. Sun ◽  
P. H. Shipway

This paper investigates the effect of contact geometry, temperature and displacement amplitude on the fretting behaviour of an aero-turbo oil lubricated cylinder-on-flat contact. To be effective, the lubricant needed both to penetrate the contact and then offer protection. Lubricant penetration into the fretting contact is found to be controlled by two physical parameters, namely (i) the width of the contact that remains covered throughout the fretting test and (ii) the lubricant viscosity. The protection offered by the lubricant (assuming that it has successfully penetrated the contact) is influenced by four physical parameters, namely (i) lubricant viscosity, (ii) traverse velocity, (iii) nominal contact pressure, and (iv) chemical effects. The relationship between the three experimental parameters which were varied in the programme of work (temperature, fretting displacement and cylinder radius) and physical parameters which influence the protection offered by the lubricant film can be competing, and therefore complex wear behaviour is observed. The roles of the various parameters in controlling the wear behaviour are presented in a coherent physical framework.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


2013 ◽  
Vol 55 (6) ◽  
pp. 468-471 ◽  
Author(s):  
Dursun Özyürek ◽  
Ibrahim Ciftci ◽  
Tansel Tuncay

Optik ◽  
2020 ◽  
Vol 202 ◽  
pp. 163555 ◽  
Author(s):  
Dipanjan Dey ◽  
Kalinga Simant Bal ◽  
Anitesh Kumar Singh ◽  
Asimava Roy Choudhury

2014 ◽  
Vol 66 (4) ◽  
pp. 520-524 ◽  
Author(s):  
Serkan Büyükdoğan ◽  
Süleyman Gündüz ◽  
Mustafa Türkmen

Purpose – The paper aims to provide new observations about static strain ageing in aluminium (Al) alloys which are widely used in structural applications. Design/methodology/approach – The present work aims to provide theoretical and practical information to industries or researchers who may be interested in the effect of static strain ageing on mechanical properties of Al alloys. The data are sorted into the following sections: introduction, materials and experimental procedure, results and discussion and conclusions. Findings – Tensile strength, proof strength (0.2 per cent) and percentage elongation measurement were used to investigate the effect of strain ageing on the mechanical properties. Wear tests were performed by sliding the pin specimens, which were prepared from as-received, solution heat-treated, deformed and undeformed specimens after ageing, on high-speed tool steel (64 HRC). It is concluded that the variations in ageing time improved the strength and wear resistance of the 6063 Al alloy; however, a plastically deformed solution-treated alloy has higher strength and wear resistance than undeformed specimens for different ageing times at 180°C. Practical implications – A very useful source of information for industries using or planning to produce Al alloys. Originality/value – This paper fulfils an identified resource need and offers practical help to the industries.


Author(s):  
K. Alagarraja ◽  
B. Vijaya Ramnath ◽  
A. Rajendra Prasad ◽  
E. Naveen ◽  
N. Ramanan

Sign in / Sign up

Export Citation Format

Share Document