Efficient water desalination through mono and bilayer carbon nitride nanosheet membranes: Insights from molecular dynamics simulation

Author(s):  
Negin Karimzadeh ◽  
Jafar Azamat ◽  
Hamid Erfan-Niya
Author(s):  
Mohammad Moulod ◽  
Gisuk Hwang

Fundamental understanding of the water in graphene is crucial to optimally design and operate the sustainable energy, water desalination, and bio-medical systems. A numerous atomic-scale studies have been reported, primarily articulating the surface interactions (interatomic potentials) between the water and graphene. However, a systematic comparative study among the various interatomic potentials is rare, especially for the water transport confined in the graphene nanostructure. In this study, the effects of different interatomic potentials and gap sizes on water self-diffusivity are investigated using the molecular dynamics simulation at T = 300 K. The water is confined in the rigid graphene nanogap with the various gap sizes Lz = 0.7 to 4.17 nm, using SPC/E and TIP3P water models. The water self-diffusivity is calculated using the mean squared displacement approach. It is found that the water self-diffusivity in the confined region is lower than that of the bulk water, and it decreases as the gap size decreases and the surface energy increases. Also, the water self-diffusivity nearly linearly decreases with the increasing surface energy to reach the bulk water self-diffusivity at zero surface energy. The obtained results provide a roadmap to fundamentally understand the water transport properties in the graphene geometries and surface interactions.


2016 ◽  
Vol 7 (12) ◽  
pp. 6988-6994 ◽  
Author(s):  
Pengzhan Sun ◽  
Renzhi Ma ◽  
Hui Deng ◽  
Zhigong Song ◽  
Zhen Zhen ◽  
...  

A combined experimental and molecular dynamics simulation study shows that intrinsic high water/ion selectivity of graphene oxide lamellar membrane was achieved in concentration gradient-driven diffusion, showing great promise in water desalination.


2020 ◽  
Vol 22 (29) ◽  
pp. 16978-16984 ◽  
Author(s):  
Yifan Zhang ◽  
Timing Fang ◽  
Quangang Hou ◽  
Zhen Li ◽  
Youguo Yan

Preparing a nanoporous membrane with high density and ordered pore sizes which allows high water permeability and salt rejection rate is the key to realize highly efficient desalination.


Sign in / Sign up

Export Citation Format

Share Document