Molecular dynamics simulation-directed rational design of nanoporous graphitic carbon nitride membranes for water desalination

2020 ◽  
pp. 118869
Author(s):  
Yichang Liu ◽  
Ziwei Cheng ◽  
Meiru Song ◽  
Lizhi Jiang ◽  
Gang Fu ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (93) ◽  
pp. 76642-76650 ◽  
Author(s):  
Kiana Gholamjani Moghaddam ◽  
Seyed Majid Hashemianzadeh

Our study provides insight into the effect of different substituents on the G-quadruplex–ligand interactions which helps us rational ligand design.


Author(s):  
Mohammad Moulod ◽  
Gisuk Hwang

Fundamental understanding of the water in graphene is crucial to optimally design and operate the sustainable energy, water desalination, and bio-medical systems. A numerous atomic-scale studies have been reported, primarily articulating the surface interactions (interatomic potentials) between the water and graphene. However, a systematic comparative study among the various interatomic potentials is rare, especially for the water transport confined in the graphene nanostructure. In this study, the effects of different interatomic potentials and gap sizes on water self-diffusivity are investigated using the molecular dynamics simulation at T = 300 K. The water is confined in the rigid graphene nanogap with the various gap sizes Lz = 0.7 to 4.17 nm, using SPC/E and TIP3P water models. The water self-diffusivity is calculated using the mean squared displacement approach. It is found that the water self-diffusivity in the confined region is lower than that of the bulk water, and it decreases as the gap size decreases and the surface energy increases. Also, the water self-diffusivity nearly linearly decreases with the increasing surface energy to reach the bulk water self-diffusivity at zero surface energy. The obtained results provide a roadmap to fundamentally understand the water transport properties in the graphene geometries and surface interactions.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 805 ◽  
Author(s):  
Seong Jun Mun ◽  
Soo-Jin Park

The generation of photocatalytic hydrogen via water splitting under light irradiation is attracting much attention as an alternative to solve such problems as global warming and to increase interest in clean energy. However, due to the low efficiency and selectivity of photocatalytic hydrogen production under solar energy, a major challenge persists to improve the performance of photocatalytic hydrogen production through water splitting. In recent years, graphitic carbon nitride (g-C3N4), a non-metal photocatalyst, has emerged as an attractive material for photocatalytic hydrogen production. However, the fast recombination of photoexcited electron–hole pairs limits the rate of hydrogen evolution and various methods such as modification, heterojunctions with semiconductors, and metal and non-metal doping have been applied to solve this problem. In this review, we cover the rational design of g-C3N4-based photocatalysts achieved using methods such as modification, metal and non-metal doping, and heterojunctions, and we summarize recent achievements in their application as hydrogen production photocatalysts. In addition, future research and prospects of hydrogen-producing photocatalysts are also reviewed.


2019 ◽  
Vol 131 (23) ◽  
pp. 7784-7789 ◽  
Author(s):  
Xiaohuan Sun ◽  
Laura Riccardi ◽  
Federico De Biasi ◽  
Federico Rastrelli ◽  
Marco De Vivo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document