scholarly journals Microstructure authentication on mechanical property of medium carbon Low alloy duplex steels

2020 ◽  
Vol 9 (3) ◽  
pp. 5105-5111 ◽  
Author(s):  
B.M. Gurumurthy ◽  
M.C. Gowrishankar ◽  
Sathyashankara Sharma ◽  
Achutha Kini ◽  
Manjunath Shettar ◽  
...  
Author(s):  
C.C. Chama

The tensile and fracture strength of a medium carbon steel containing 0.2wt%C were determined after austenitisation at 1100oC for 1 h and subsequent isothermal transformation at 700oC for 0.5, 2, 6 and 8 h. Only the specimens transformed for 0.5 and 2 h contained martensite and these were l5.67 and 7.20%, respectively. The maximum measured tensile and fracture strength were 91l and 852 MPa, respectively and these were obtained in the specimens with the most martensite (0.5 h). Although after austenitisation and subsequent isothermal transformation there was a loss in ductility, this was accompanied by a very significant improvement in tensile and fracture strength.


2010 ◽  
Vol 654-656 ◽  
pp. 57-61 ◽  
Author(s):  
Hong Sheng Fang ◽  
Gu Hui Gao ◽  
Yan Kang Zheng ◽  
Zhi Gang Yang ◽  
Bing Zhe Bai

The origin and development of air-cooled Mn-series bainite steels are introduced. The invented idea, strengthening-toughening mechanism, mechanical performances, development and application of this kind of steel including granular bainitic steels, FGBA / BG duplex steels, CFB/M duplex steels, medium carbon bainite/martensite steels, cast bainitic steels are presented. The invented idea mechanical performances, development and application of second generation of Mn-series bainitic steels, i.e. water-quenched Mn-series bainitic steels invented by the authors newly are introduced. The water quenched Mn-series bainitic steels can meet the performance requirements of most steels used in engineering structure, reduce the amount of alloying content, increase harden capability and improve weldability. It should be pointed out that the application of both air-cold and water- quenched Mn-series bainitic steels are complementary and mutually reinforcing. Some newest technology of Mn-series bainitic steels in China are discussed in this paper. It is suggested that the significance of the development of the Mn-series bainitic steels can be summarized as: significantly reducing costs of both raw materials and production; good combination of strength and toughness; excellent weldability; simple procedure; large savings in energy resources and environmental pollution is reduced.


1995 ◽  
Vol 66 (5) ◽  
pp. 206-212 ◽  
Author(s):  
Fereydun Bahrami ◽  
Rankin Kennedy

Author(s):  
M.T. Jahn ◽  
J.C. Yang ◽  
C.M. Wan

4340 Ni-Cr-Mo alloy steel is widely used due to its good combination of strength and toughness. The mechanical property of 4340 steel can be improved by various thermal treatments. The influence of thermomechanical treatment (TMT) has been studied in a low carbon Ni-Cr-Mo steel having chemical composition closed to 4340 steel. TMT of 4340 steel is rarely examined up to now. In this study we obtain good improvement on the mechanical property of 4340 steel by TMT. The mechanism is explained in terms of TEM microstructures4340 (0.39C-1.81Ni-0.93Cr-0.26Mo) steel was austenitized at 950°C for 30 minutes. The TMTed specimen (T) was obtained by forging the specimen continuously as the temperature of the specimen was decreasing from 950°C to 600°C followed by oil quenching to room temperature. The thickness reduction ratio by forging is 40%. The conventional specimen (C) was obtained by quenching the specimen directly into room temperature oil after austenitized at 950°C for 30 minutes. All quenched specimens (T and C) were then tempered at 450, 500, 550, 600 or 650°C for four hours respectively.


Author(s):  
F. A. Khalid ◽  
D. V. Edmonds

The austenite/pearlite growth interface in a model alloy steel (Fe-1 lMn-0.8C nominal wt%) is being investigated. In this particular alloy pearlite nodules can be grown isothermally in austenite that remains stable at room temperature, thus facilitating examination of the transformation interfaces. This study presents preliminary results of thin foil TEM of the austenite/pearlite interface, as part of a programme of aimed at studying alloy carbide precipitation reactions at this interface which can result in significant strengthening of microalloyed low- and medium- carbon steels L Similar studies of interface structure, made on a partially decomposed high- Mn austenitic alloy, have been reported recently.The experimental alloys were made as 50 g argon arc melts using high purity materials and homogenised. Samples were hot- rolled, swaged and machined to 3mm diameter rod, solution treated at 1300 °C for 1 hr and WQ. Specimens were then solutionised between 1250 °C and 1000 °C and isothermally transformed between 610 °C and 550 °C for 10-18 hr and WQ.


Author(s):  
F. A. Khalid ◽  
D. V. Edmonds

The austenite/pearlite growth interface in a model alloy steel (Fe-1lMn-0.8C-0.5V nominal wt%) is being studied in an attempt to characterise the morphology and mechanism of VC precipitation at the growth interface. In this alloy pearlite nodules can be grown isothermally in austenite that remains stable at room temperature thus facilitating examination of the transformation interfaces. This study presents preliminary results of thin foil TEM of the precipitation of VC at the austenite/ferrite interface, which reaction, termed interphase precipitation, occurs in a number of low- carbon HSLA and microalloyed medium- and high- carbon steels. Some observations of interphase precipitation in microalloyed low- and medium- carbon commercial steels are also reported for comparison as this reaction can be responsible for a significant increase in strength in a wide range of commercial steels.The experimental alloy was made as 50 g argon arc melts using high purity materials and homogenised. Samples were solution treated at 1300 °C for 1 hr and WQ. Specimens were then solutionised at 1300 °C for 15 min. and isothermally transformed at 620 °C for 10-18hrs. and WQ. Specimens of microalloyed commercial steels were studied in either as-rolled or as- forged conditions. Detailed procedures of thin foil preparation for TEM are given elsewhere.


Sign in / Sign up

Export Citation Format

Share Document