scholarly journals Use of XRD technique to investigate the stability of quasicrystalline phase in high-energy milled Al/AlCuFe powders

2021 ◽  
Vol 15 ◽  
pp. 1496-1498
Author(s):  
K.S. Evangelista ◽  
D.G.L. Cavalcante
2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Carrie Sanders ◽  
Douglas L. Strout

Complex forms of nitrogen are of interest for their potential as high-energy materials, but many all-nitrogen systems lack the stability for practical high-energy applications. Inclusion of carbon atoms in an otherwise all-nitrogen structure can increase stability. Nitrogen cages are known for energetically preferring cylindrical structures with triangular endcaps, but carbon cages prefer the pentagon-hexagon structure of the fullerenes. Previous calculations on N22C2have shown that carbon inclusion narrows the gap between triangular and fullerene-like structures. In the current study, three isomers of N24are used as frameworks for carbon substitution. Theoretical calculations are carried out on isomers of N20C4, N18C6, and N16C8, with the goal of determining what level of carbon substitution causes the carbon fullerene-like structures to become energetically preferred.


Author(s):  
Lei Wang ◽  
Kathleen C Frisella ◽  
Pattarachai Srimuk ◽  
Oliver Janka ◽  
Guido Kickelbick ◽  
...  

Electrochemical processes enable fast lithium extraction, for example, from brines, with high energy efficiency and stability. Lithium iron phosphate (LiFePO4) and manganese oxide (λ-MnO2) have usually been employed as the...


1999 ◽  
Vol 32 (6) ◽  
pp. 1033-1038 ◽  
Author(s):  
A. S. Avilov ◽  
A. K. Kuligin ◽  
U. Pietsch ◽  
J. C. H. Spence ◽  
V. G. Tsirelson ◽  
...  

A new electron diffractometer with a diffraction-pattern scanning system in front of a fixed counter has been developed. Significant improvement was achieved in the measured diffraction intensities by using fast electronics and additional control of the stability of the electron beam. The measurement of and accounting for the gear-frequency characteristic of the registration system was performed, and the signal accumulation mode for intensity measurements together with advanced statistical data processing were employed. Good agreement between the experimental and Hartree–Fock structure factors for LiF, NaF and MgO was achieved (to avoid strong extinction effects, rather thin polycrystalline films were used as samples).


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5344
Author(s):  
Feng Cui ◽  
Shuai Dong ◽  
Xingping Lai ◽  
Jianqiang Chen ◽  
Chong Jia ◽  
...  

In the inclination direction, the fracture law of a longwall face roof is very important for roadway control. Based on the W1123 working face mining of Kuangou coal mine, the roof structure, stress and energy characteristics of W1123 were studied by using mechanical analysis, model testing and engineering practice. The results show that when the width of W1123 is less than 162 m, the roof forms a rock beam structure in the inclined direction, the floor pressure is lower, the energy and frequency of microseismic (MS) events are at a low level, and the stability of the section coal pillar is better. When the width of W1123 increases to 172 m, the roof breaks along the inclined direction, forming a double-hinged structure, the floor pressure is increased, and the frequency and energy of MS events also increases. The roof gathers elastic energy release, and combined with the MS energy release speed it can be considered that the stability of the section coal pillar is better. As the width of W1123 increases to 184 m, the roof in the inclined direction breaks again, forming a multi-hinged stress arch structure, and the floor pressure increases again. MS high-energy events occur frequently, and are not conducive to the stability of the section coal pillar. Finally, through engineering practice we verified the stability of the section coal pillar when the width of W1123 was 172 m, which provides a basis for determining the width of the working face and section coal pillar under similar conditions.


2019 ◽  
Vol 624 ◽  
pp. A101 ◽  
Author(s):  
Daniele Locci ◽  
Cesare Cecchi-Pestellini ◽  
Giuseppina Micela

Context. X-rays and extreme ultraviolet radiation impacting a gas produce a variety of effects that, depending on the electron content, may provide significant heating of the illuminated region. In a planetary atmosphere of solar composition, stellar high energy radiation can heat the gas to very high temperatures and this could affect the stability of planetary atmospheres, in particular for close-in planets. Aims. We investigate the variations with stellar age in the occurring frequency of gas giant planets orbiting G and M stars, taking into account that the high energy luminosity of a low mass star evolves in time, both in intensity and hardness. Methods. Using the energy-limited escape approach we investigated the effects induced by the atmospheric mass loss on giant exoplanet distribution that is initially flat, at several distances from the parent star. We followed the dynamical evolution of the planet atmosphere, tracking the departures from the initial profile due to the atmospheric escape, until it reaches the final mass-radius configuration. Results. We find that a significant fraction of low mass Jupiter-like planets orbiting with periods lower than ~3.5 days either vaporize during the first billion years or lose a relevant part of their atmospheres. The planetary initial mass profile is significantly distorted; in particular, the frequency of occurrence of gas giants, less massive than 2 MJ, around young stars can be considerably greater than their occurrence around older stellar counterparts.


1981 ◽  
Vol 59 (5) ◽  
pp. 859-864
Author(s):  
Jeanine Bouteiller-Prati ◽  
Jean-Claude Bouteiller ◽  
Jean-Pierre Aycard

From J and δ values determined by the nmr study of alcohols obtained by addition of CH3Li and LiAlH4 to the exocyclic carbonyl of cis and trans 3-alkyl 4-carbomethoxy (or acetyl) cyclohexenes (alkyl = H, CH3, C(CH3)3), we have deduced the conformational free energy values (ΔG0X) of the CH(CH3)OH and C(CH3)2OH substituents (0.62 and 2.08 kcal mol−1 respectively) as well as the values for some related conformational equilibria. For transtert-butyl derivatives the stability of the diaxial conformer agrees with a reaction path involving high energy conformers.


Robotica ◽  
2001 ◽  
Vol 19 (3) ◽  
pp. 275-284 ◽  
Author(s):  
M. Wisse ◽  
A. L. Schwab ◽  
R. Q. vd. Linde

Autonomous walking bipedal machines, possibly useful for rehabilitation and entertainment purposes, need a high energy efficiency, offered by the concept of ‘Passive Dynamic Walking' (exploitation of the natural dynamics of the robot). 2D passive dynamic bipeds have been shown to be inherently stable, but in the third dimension two problematic degrees of freedom are introduced: yaw and roll.We propose a design for a 3D biped with a pelvic body as a passive dynamic compensator, which will compensate for the undesired yaw and roll motion, and allow the rest of the robot to move as if it were a 2D machine. To test our design, we perform numerical simulations on a multibody model of the robot. With limit cycle analysis we calculate the stability of the robot when walking at its natural speed.The simulation shows that the compensator, indeed, effectively compensates for both the yaw and the roll motion, and that the walker is stable.


2021 ◽  
Vol 99 (1) ◽  
pp. 63-71
Author(s):  
Qiannan Ma ◽  
Weihua Zhu

The density functional tight binding method was used to explore the energetics, electronic structure, and vibrational spectra of pentaerythritol tetranitrate (PETN) nanoparticles (NPs). The surface energy of the PETN NP is anisotropic and its extra energy decreases with the increase of size. The energy bands of the NPs are significantly expanded and the band gaps are narrowed, thus reducing the stability due to nanometer size effect. The surface of the NP is mainly covered by the NO2 group. The high-energy surface may play a role in triggering chemical decomposition. The vibration frequencies of the PETN NPs present a wider distribution than those of the gas and solid phase PETN, which will increase the probability of energy transfer to the molecules in the system and promote the decomposition of PETN. Our results provide a basic understanding from a molecular perspective to the energy properties of nano explosives.


1997 ◽  
Vol 3 (S2) ◽  
pp. 365-366
Author(s):  
M.B. Sherman ◽  
J. Brink ◽  
W. Chiu

High resolution imaging in electron cryomicroscopy of biological macromolecules is strongly affected by beam-induced charging1. Charging is often expressed in frozen or glucose-embedded specimens as an increase in apparent mass-thickness of the irradiated area. Another obvious effect of charging is blurring of both the unscattered beam and reflections in electron diffraction patterns recorded from crystalline specimens. Coating of ice-embedded specimens with a carbon layer helps to improve the stability of the ice and probably reduce charging of the specimen. Coating in a Gatan ion-beam coater (model 681) of glucose-embedded specimens with thin layers of various conductive materials did reduce charging but the specimens were damaged by the high energy ions used for the coating. In general, coating resulted in much weaker reflections in electron diffraction patterns obtained from coated crystals and faster resolution fall-off.We modified the Gatan coater by outfitting it with a new chamber that replaced the ion-beam deposition capability for thermal evaporation of carbon rods (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document