scholarly journals Quenchant oil viscosity and tempering temperature effect on mechanical properties of 42CrMo4 steel

Author(s):  
Bhagyalaxmi ◽  
Sathyashankara Sharma ◽  
P.K. Jayashree ◽  
Ananda Hegde
Author(s):  
A. Çalık ◽  
O. Dokuzlar ◽  
N. Uçar

Purpose: In this study, the effect of heat treatment on the microstructure and mechanical properties of 42CrMo4 steel were investigated. Design/methodology/approach: The samples were annealed at 860°C for 120 min. followed by oil quenching and then tempered at temperatures between 480 and 570°C for 120 min. The microstructure of untreated 42CrMo4 steel mainly consists of pearlite and ferrite whereas the microstructure was found to be as a martensitic structure with a quenching process. Findings: The results showed that there is an increase in yield stress, ultimate tensile stress, hardness and impact energy, while elongation decreases at the end of the quenching process. Conversely, yield stress, ultimate tensile stress and hardness decrease slightly with the increasing of tempering temperature, while elongation and impact energy increase. Research limitations/implications: Other types of steels can be heat treated in a wider temperature range and the results can be compared. Practical implications: It is a highly effective method for improving the mechanical properties of heat treatment materials. Originality/value: A relationship between the mechanical properties and the microstructure of materials can be developed. The heat treatment is an effective method for this process.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 61
Author(s):  
Kenneth P. Mineart ◽  
Cameron Hong ◽  
Lucas A. Rankin

Organogels have recently been considered as materials for transdermal drug delivery media, wherein their transport and mechanical properties are among the most important considerations. Transport through organogels has only recently been investigated and findings highlight an inextricable link between gels’ transport and mechanical properties based upon the formulated polymer concentration. Here, organogels composed of styrenic triblock copolymer and different aliphatic mineral oils, each with a unique dynamic viscosity, are characterized in terms of their quasi-static uniaxial mechanical behavior and the internal diffusion of two unique solute penetrants. Mechanical testing results indicate that variation of mineral oil viscosity does not affect gel mechanical behavior. This likely stems from negligible changes in the interactions between mineral oils and the block copolymer, which leads to consistent crosslinked network structure and chain entanglement (at a fixed polymer concentration). Conversely, results from diffusion experiments highlight that two penetrants—oleic acid (OA) and aggregated aerosol-OT (AOT)—diffuse through gels at a rate inversely proportional to mineral oil viscosity. The inverse dependence is theoretically supported by the hydrodynamic model of solute diffusion through gels. Collectively, our results show that organogel solvent variation can be used as a design parameter to tailor solute transport through gels while maintaining fixed mechanical properties.


2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Ji Zhou ◽  
Qing Cai ◽  
Xing Liu ◽  
Yanhuai Ding ◽  
Fu Xu

2019 ◽  
Vol 22 (2) ◽  
pp. 1900540
Author(s):  
Mikhail Seleznev ◽  
Sebastian Henschel ◽  
Enrico Storti ◽  
Christos G. Aneziris ◽  
Lutz Krüger ◽  
...  

2015 ◽  
Vol 75 ◽  
pp. 342-348 ◽  
Author(s):  
Rami A. Hawileh ◽  
Adi Abu-Obeidah ◽  
Jamal A. Abdalla ◽  
Adil Al-Tamimi

Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 423
Author(s):  
Thorsten Michler ◽  
Frank Schweizer ◽  
Ken Wackermann

It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels, nickel superalloys, and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THE,max, where the degradation of this mechanical property reaches a maximum. Above and below this temperature, the degradation is less. Unfortunately, the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications, studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly, and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THE,max are in the range of about 200–340 K, which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is, the value of THE,max itself, as well as the slope of the gradient, might affect the materials selection for a dedicated application. Given the current lack of scientific understanding, a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications.


2018 ◽  
Vol 730 ◽  
pp. 284-294 ◽  
Author(s):  
Ari Saastamoinen ◽  
Antti Kaijalainen ◽  
Jouko Heikkala ◽  
David Porter ◽  
Pasi Suikkanen

Sign in / Sign up

Export Citation Format

Share Document