Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria

2021 ◽  
Vol 78 ◽  
pp. 131-143
Author(s):  
Jianxu Bao ◽  
Hang Li ◽  
Yuanting Xu ◽  
Shengqiu Chen ◽  
Zhoujun Wang ◽  
...  
2020 ◽  
pp. 0734242X2094327
Author(s):  
Viktoriia Novoseltseva ◽  
Halyna Yankovych ◽  
Olena Kovalenko ◽  
Miroslava Václavíková ◽  
Inna Melnyk

This research deals with a highly efficient, selective, low-cost, and recyclable adsorbent for the fast removal of lead (Pb)(II) ions from aqueous solutions, and an investigation of the related adsorption mechanisms. Three types of materials were prepared from pea peels waste using simple, energy-efficient and environmentally friendly treatment. Obtained adsorbents were characterized by elemental analysis, infrared spectroscopy, scanning electron microscopy, Boehm titration, and the main parameters were determined. The highest adsorption capacity was observed for the biochar prepared by heating of pea peels at 600°C for 30 minutes. The uptake of Pb(II) ions on pea peels-derived samples was examined as a function of pH, contact time, and initial Pb2+ concentration. Obtained results from adsorption experiments of Pb(II) ions on the biochar surface indicate high adsorption capacity, and the possibility of its preconcentration and selective removal in the presence of zinc(II) and cadmium(II) ions. This confirms a potential application of such materials in water remediation.


2020 ◽  
Vol 8 (25) ◽  
pp. 12657-12664 ◽  
Author(s):  
Hong-Ju Da ◽  
Cheng-Xiong Yang ◽  
Hai-Long Qian ◽  
Xiu-Ping Yan

A knot-linker planarity control strategy was developed to construct highly crystalline cationic covalent organic frameworks with C3-symmetric guanidine units for fast removal of 2,4-dichlorophenol with high adsorption capacity.


1999 ◽  
Vol 40 (7) ◽  
pp. 109-116 ◽  
Author(s):  
M. H. Ansari ◽  
A. M. Deshkar ◽  
P. S. Kelkar ◽  
D. M. Dharmadhikari ◽  
M. Z. Hasan ◽  
...  

Steamed Hoof Powder (SHP), size < 53μ, was observed to have high adsorption capacity for Hg(II) with >95% removal from a solution containing 100 mg/L of Hg(II) with only 0.1% (W/V) concentration of SHP. The SHP has good settling properties and gives clear and odour free effluent. Studies indicate that pH values between 2 and 10 have no effect on the adsorption of Hg(II) on SHP. Light metal ions like Na+, K+, Ca2+ and Mg2+ up to concentrations of 500 mg/L and heavy metals like Cu2+, Zn2+, Cd2+, Co2+, Pb2+, Ni2+, Mn2+, Cr3+, Cr6+, Fe2+ and Fe3+ up to concentrations of 100 mg/L do not interfere with the adsorption process. Anions like sulphate, acetate and phosphate up to concentrations of 200 mg/L do not interfere. Chloride interferes in the adsorption process when Hg(II) concentration is above 9.7 mg/L. The adsorption equilibrium was established within two hours. Studies indicate that adsorption occurs on the surface sites of the adsorbent.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1540
Author(s):  
Muhammad Ahmad ◽  
Tehseen Nawaz ◽  
Mohammad Mujahid Alam ◽  
Yasir Abbas ◽  
Shafqat Ali ◽  
...  

The development of excellent drug adsorbents and clarifying the interaction mechanisms between adsorbents and adsorbates are greatly desired for a clean environment. Herein, we report that a reduced graphene oxide modified sheeted polyphosphazene (rGO/poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol)) defined as PZS on rGO was used to remove the tetracycline (TC) drug from an aqueous solution. Compared to PZS microspheres, the adsorption capacity of sheeted PZS@rGO exhibited a high adsorption capacity of 496 mg/g. The adsorption equilibrium data well obeyed the Langmuir isotherm model, and the kinetics isotherm was fitted to the pseudo-second-order model. Thermodynamic analysis showed that the adsorption of TC was an exothermic, spontaneous process. Furthermore, we highlighted the importance of the surface modification of PZS by the introduction of rGO, which tremendously increased the surface area necessary for high adsorption. Along with high surface area, electrostatic attractions, H-bonding, π-π stacking and Lewis acid-base interactions were involved in the high adsorption capacity of PZS@rGO. Furthermore, we also proposed the mechanism of TC adsorption via PZS@rGO.


Sign in / Sign up

Export Citation Format

Share Document