Modeling of gas porosity and microstructure formation during dendritic and eutectic solidification of ternary Al-Si-Mg alloys

2021 ◽  
Vol 76 ◽  
pp. 76-85
Author(s):  
Mengdan Hu ◽  
Taotao Wang ◽  
Hui Fang ◽  
Mingfang Zhu
Author(s):  
J. Hefter

Semiconductor-metal composites, formed by the eutectic solidification of silicon and a metal silicide have been under investigation for some time for a number of electronic device applications. This composite system is comprised of a silicon matrix containing extended metal-silicide rod-shaped structures aligned in parallel throughout the material. The average diameter of such a rod in a typical system is about 1 μm. Thus, characterization of the rod morphology by electron microscope methods is necessitated.The types of morphometric information that may be obtained from such microscopic studies coupled with image processing are (i) the area fraction of rods in the matrix, (ii) the average rod diameter, (iii) an average circularity (roundness), and (iv) the number density (Nd;rods/cm2). To acquire electron images of these materials, a digital image processing system (Tracor Northern 5500/5600) attached to a JEOL JXA-840 analytical SEM has been used.


Author(s):  
R. B. Marinenko

Internally oxidized Ag-Mg alloys are used as sheaths for high Tc superconductor wires because of their superior mechanical properties. The preparation and characteristics of these materials have been reported. Performance of the sheaths depends on the concentration of the magnesium which generally is less than 0.5 wt. percent. The purpose of this work was to determine whether electron probe microanalysis using energy dispersive spectrometry (EDS) could be used to quantitate three different Ag-Mg alloys. Quantitative EDS analysis can be difficult because the AgL escape peak occurs at the same energy (1.25 keV) as the Mg Kα peak. An EDS spectrum of a Ag-Mg alloy wire is compared to a pure Ag spectrum in Fig. 1.


2016 ◽  
Vol 54 (6) ◽  
pp. 390-399 ◽  
Author(s):  
Dong Bok Lee ◽  
Shae Kwang Kim ◽  
Soon Yong Park

2016 ◽  
Vol 700 ◽  
pp. 142-151 ◽  
Author(s):  
Sergey A. Belyakov ◽  
Christopher M. Gourlay

Sn-3Ag-3Bi-3In solder has been investigated to improve the understanding of microstructure formation in this solder during solidification and soldering to Cu and Ni substrates. The as-solidified microstructures of Sn-3Ag-3Bi-3In samples were found to consist of a significant fraction of βSn dendrites with a complex eutectic between the dendrites. In total five phases were observed to form during solidification: βSn, Ag3Sn, Bi, ζAg and a “Sn-In-Bi” ternary compound. Soldering of Sn-3Ag-3Bi-3In to substrates changed the phase equilibria in the system and caused the formation of additional phases: Cu6Sn5 during soldering to Cu and Ni3Sn4 and metastable NiSn4 during soldering to Ni. It is shown that metastable NiSn4 forms as a primary phase in a complex 5-component Sn-3Ag-3Bi-3In-Ni system. In and Bi were detected in solid solution in the βSn matrix in amounts of ~1.5-2at% and ~1.2at% respectively. Bi also existed as fine particles of two distinct types. (i): sub-micron (<500nm) coral-like particles and (ii) facetted particles measuring up to 7-8 μm.


Sign in / Sign up

Export Citation Format

Share Document