Functional connectivity changes in complex migraine aura: Beyond the visual network

2021 ◽  
Vol 429 ◽  
pp. 117737
Author(s):  
Marcello Silvestro ◽  
Alessandro Tessitore ◽  
Fabrizio Scotto Di Clemente ◽  
Francesca Trojsi ◽  
Mario Cirillo ◽  
...  
Author(s):  
Marcello Silvestro ◽  
Alessandro Tessitore ◽  
Federica Di Nardo ◽  
Fabrizio Scotto di Clemente ◽  
Francesca Trojsi ◽  
...  

Cephalalgia ◽  
2013 ◽  
Vol 33 (15) ◽  
pp. 1264-1268 ◽  
Author(s):  
Nouchine Hadjikhani ◽  
Noreen Ward ◽  
Jasmine Boshyan ◽  
Vitaly Napadow ◽  
Yumi Maeda ◽  
...  

Background Migraine is a neurovascular disorder in which altered functional connectivity between pain-modulating circuits and the limbic system may play a role. Cortical spreading depression (CSD), which underlies migraine aura (MWA), induces C-fos expression in the amygdala. The role of CSD and amygdala connectivity in migraine without aura (MwoA) is less clear and may differentiate migraine from other chronic pain disorders. Methods Using resting-state functional MRI, we compared functional connectivity between the amygdala and the cortex in MWA and MWoA patients as well as in healthy subjects and in two other chronic pain conditions not associated with CSD: trigeminal neuralgia (TGN) and carpal tunnel syndrome (CTS). Results Amygdala connectivity in both MWA and MWoA was increased to the visceroceptive insula relative to all other groups examined. Conclusion The observed increased connectivity within the limbic/viscerosensory network, present only in migraineurs, adds to the evidence of a neurolimbic pain network dysfunction and may reflect repetitive episodes of CSD leading to the development of migraine pain.


2019 ◽  
Author(s):  
Alexander Belden ◽  
Tima Zeng ◽  
Emily Przysinda ◽  
Sheeba Arnold Anteraper ◽  
Susan Whitfield-Gabrieli ◽  
...  

AbstractJazz improvisation offers a model for creative cognition, as it involves the real-time creation of a novel, information-rich product. Previous research has shown that when musicians improvise, they recruit regions in the Default Mode Network (DMN) and Executive Control Network (ECN). Here, we ask whether these findings from task-fMRI studies might extend to intrinsic differences in resting state functional connectivity. We compared Improvising musicians, Classical musicians, and Minimally Musically Trained (MMT) controls in seed-based functional connectivity and network analyses in resting state functional MRI. We also examined the functional correlates of behavioral performance in musical improvisation and divergent thinking. Seed-based analysis consistently showed higher connectivity in ventral DMN (vDMN) and bilateral ECN in both groups of musically trained individuals as compared to MMT controls, with additional group differences in primary visual network, precuneus network, and posterior salience network. In particular, primary visual network connectivity to DMN and ECN was highest in Improvisational musicians, whereas within-network connectivity of vDMN and precuneus network was higher in both Improvisational and Classical musicians than in MMT controls; in contrast, connectivity between posterior salience network and superior parietal lobule was highest in Classical musicians. Furthermore, graph-theoretical analysis indicated heightened betweenness centrality, clustering, and local efficiency in Classical musicians. Taken together, results suggest that heightened functional connectivity among musicians can be explained by higher within-network connectivity (more tight-knit cortical networks) in Classical musicians, as opposed to more disperse, globally-connected cortical networks in Improvisational musicians.HighlightsMusic training is associated with higher resting state connectivityHigher connectivity in Improvisational musicians from visual network to ECN and DMNClassical musicians show higher vDMN and Precuneus within-network connectivityImprovisation and divergent thinking performance correlate with similar connectivity patterns


Cephalalgia ◽  
2010 ◽  
Vol 30 (11) ◽  
pp. 1383-1391 ◽  
Author(s):  
Maria A Rocca ◽  
Paola Valsasina ◽  
Martina Absinta ◽  
Bruno Colombo ◽  
Valeria Barcella ◽  
...  

Introduction: In this study, we investigated whether abnormalities of the brain resting-state networks (RSNs) occur in patients with episodic cluster headache (CH), outside the attacks of the disease. Patients and methods: RS fMRI scans were acquired from 13 CH patients and 15 healthy controls. RS fMRI data were analyzed using both independent component analysis (ICA) and a seed correlation analysis, starting from the hypothalamus and the thalamus. Results: The seed correlation analysis revealed increased functional connectivity within the networks identified starting from the hypothalami and thalami in CH patients versus controls. ICA analysis detected 11 RSNs with potential functional relevance. Among these networks, CH patients had decreased fluctuations within the sensorimotor and the primary visual network compared to controls ( P-values 0.03–0.007). RSN abnormalities were significantly correlated with disease duration. Conclusions: In CH patients a diffuse abnormality of brain functional connectivity is present, which extends beyond the antinoceptive system.


2021 ◽  
Vol 15 ◽  
Author(s):  
Song Wan ◽  
Wen Qing Xia ◽  
Yu Lin Zhong

Background: Accumulating lines of evidence demonstrated that diabetic retinopathy (DR) patients trigger abnormalities in brain’s functional connectivity (FC), whereas the alterations of interhemispheric coordination pattern occurring in DR are not well understood. Our study was to investigate alterations of interhemispheric coordination in DR patients.Methods: Thirty-four DR individuals (19 males and 15 females: mean age: 52.97 ± 8.35 years) and 37 healthy controls (HCs) (16 males and 21 females; mean age: 53.78 ± 7.24 years) were enrolled in the study. The voxel-mirrored homotopic connectivity (VMHC) method was conducted to investigate the different interhemispheric FC between two groups. Then, the seed-based FC method was applied to assess the different FCs with region of interest (ROI) in the brain regions of decreased VMHC between two groups.Results: Compared with HC groups, DR groups showed decreased VMHC values in the bilateral middle temporal gyrus (MTG), lingual/calcarine/middle occipital gyrus (LING/CAL/MOG), superior temporal gyrus (STG), angular (ANG), postcentral gyrus (PosCG), inferior parietal lobule (IPL), and precentral gyrus (PreCG). Meanwhile, altered FC includes the regions of auditory network, visual network, default mode network, salience network, and sensorimotor network. Moreover, a significant positive correlation was observed between the visual acuity-oculus dexter (OD) and zVMHC values in the bilateral LING/CAL/MOG (r = 0.551, p = 0.001), STG (r = 0.426, p = 0.012), PosCG (r = 0.494, p = 0.003), and IPL (r = 0.459, p = 0.006) in DR patients.Conclusion: Our results highlighted that DR patients were associated with substantial impairment of interhemispheric coordination in auditory network, visual network, default mode network, and sensorimotor network. The VMHC might be a promising therapeutic target in the intervention of brain functional dysfunction in DR patients.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Heng-Le Wei ◽  
Xin Zhou ◽  
Yu-Chen Chen ◽  
Yu-Sheng Yu ◽  
Xi Guo ◽  
...  

Abstract Background Resting-state functional magnetic resonance imaging (fMRI) has confirmed disrupted visual network connectivity in migraine without aura (MwoA). The thalamus plays a pivotal role in a number of pain conditions, including migraine. However, the significance of altered thalamo-visual functional connectivity (FC) in migraine remains unknown. The goal of this study was to explore thalamo-visual FC integrity in patients with MwoA and investigate its clinical significance. Methods Resting-state fMRI data were acquired from 33 patients with MwoA and 22 well-matched healthy controls. After identifying the visual network by independent component analysis, we compared neural activation in the visual network and thalamo-visual FC and assessed whether these changes were linked to clinical characteristics. We used voxel-based morphometry to determine whether functional differences were dependent on structural differences. Results The visual network exhibited significant differences in regions (bilateral cunei, right lingual gyrus and left calcarine sulcus) by inter-group comparison. The patients with MwoA showed significantly increased FC between the left thalami and bilateral cunei and between the right thalamus and the contralateral calcarine sulcus and right cuneus. Furthermore, the neural activation of the left calcarine sulcus was positively correlated with visual analogue scale scores (r = 0.319, p = 0.043), and enhanced FC between the left thalamus and right cuneus in migraine patients was negatively correlated with Generalized Anxiety Disorder scores (r = − 0.617, p = 0.005). Conclusion Our data suggest that migraine distress is exacerbated by aberrant feedback projections to the visual network, playing a crucial role in migraine physiological mechanisms. The current study provides further insights into the complex scenario of migraine mechanisms.


2017 ◽  
Vol 13 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Hui Juan Chen ◽  
Jiqiu Wen ◽  
Rongfeng Qi ◽  
Jianhui Zhong ◽  
U. Joseph Schoepf ◽  
...  

Background and objectivesCognition in ESRD may be improved by kidney transplantation, but mechanisms are unclear. We explored patterns of resting-state networks with resting-state functional magnetic resonance imaging among patients with ESRD before and after kidney transplantation.Design, setting, participants, & measurementsThirty-seven patients with ESRD scheduled for kidney transplantation and 22 age-, sex-, and education-matched healthy subjects underwent resting-state functional magnetic resonance imaging. Patients were imaged before and 1 and 6 months after kidney transplantation. Functional connectivity of seven resting-state subnetworks was evaluated: default mode network, dorsal attention network, central executive network, self-referential network, sensorimotor network, visual network, and auditory network. Mixed effects models tested associations of ESRD, kidney transplantation, and neuropsychological measurements with functional connectivity.ResultsCompared with controls, pretransplant patients showed abnormal functional connectivity in six subnetworks. Compared with pretransplant patients, increased functional connectivity was observed in the default mode network, the dorsal attention network, the central executive network, the sensorimotor network, the auditory network, and the visual network 1 and 6 months after kidney transplantation (P=0.01). Six months after kidney transplantation, no significant difference in functional connectivity was observed for the dorsal attention network, the central executive network, the auditory network, or the visual network between patients and controls. Default mode network and sensorimotor network remained significantly different from those in controls when assessed 6 months after kidney transplantation. A relationship between functional connectivity and neuropsychological measurements was found in specific brain regions of some brain networks.ConclusionsThe recovery patterns of resting-state subnetworks vary after kidney transplantation. The dorsal attention network, the central executive network, the auditory network, and the visual network recovered to normal levels, whereas the default mode network and the sensorimotor network did not recover completely 6 months after kidney transplantation. Neural resting-state functional connectivity was lower among patients with ESRD compared with control subjects, but it significantly improved with kidney transplantation. Resting-state subnetworks exhibited variable recovery, in some cases to levels that were no longer significantly different from those of normal controls.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Wang ◽  
Xiaomin Wang ◽  
Runshi Wang ◽  
Xujun Duan ◽  
Heng Chen ◽  
...  

Autism spectrum disorder (ASD) has been reported to have altered brain connectivity patterns in sensory networks, assessed using resting-state functional magnetic imaging (rs-fMRI). However, the results have been inconsistent. Herein, we aimed to systematically explore the interaction between brain sensory networks in 3–7-year-old boys with ASD (N = 29) using independent component analysis (ICA). Participants were matched for age, head motion, and handedness in the MRI scanner. We estimated the between-group differences in spatial patterns of the sensory resting-state networks (RSNs). Subsequently, the time series of each RSN were extracted from each participant’s preprocessed data and associated estimates of interaction strength between intra- and internetwork functional connectivity (FC) and symptom severity in children with ASD. The auditory network (AN), higher visual network (HVN), primary visual network (PVN), and sensorimotor network (SMN) were identified. Relative to TDs, individuals with ASD showed increased FC in the AN and SMN, respectively. Higher positive connectivity between the PVN and HVN in the ASD group was shown. The strength of such connections was associated with symptom severity. The current study might suggest that the abnormal connectivity patterns of the sensory network regions may underlie impaired higher-order multisensory integration in ASD children, and be associated with social impairments.


Sign in / Sign up

Export Citation Format

Share Document