Polycarboxylate superplasticizer and viscosity modifying agent: Mode of addition and its effect on cement paste rheology using image analysis

2021 ◽  
pp. 103946
Author(s):  
Galal Fares ◽  
Abdulaziz Al-Negheimish ◽  
Abdulrahman M. Alhozaimy ◽  
M. Iqbal Khan
2012 ◽  
Vol 487 ◽  
pp. 43-47
Author(s):  
Sheng Hua Lv ◽  
Di Li ◽  
Qiang Cao

A polycarboxylate superplasticizer (PCs) was synthesized by copolymerization of allyl polyoxyethylene ethers (APE), acrylic acid (AA), sodium methylallyl Sulfonate (SMAS) and ethyl acrylate (EA). The effect of functional groups and branch chain on PCs properties was investigated by the test of fluidity of cement paste, retardation performance and Zeta potential of cement particles. The results showed that carboxylic groups and ethyl ester groups can improve water reducing ratio and fluidity of cement paste, and the sulfonic groups has an important contributiion to retardation performance of PCs.


2018 ◽  
Vol 33 (4) ◽  
pp. 932-937 ◽  
Author(s):  
Yan He ◽  
Xiong Zhang ◽  
Yaning Kong ◽  
Xiaofu Wang ◽  
Liangliang Shui ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2942 ◽  
Author(s):  
Maciej Szeląg

The research presented in this paper presents a quantitative analysis of cracking patterns on the surface of cement paste, which has been modified by the addition of the multi-wall carbon nanotubes (MWCNTs). The cracking patterns analyzed were created as a result of increased temperature load. MWCNTs were used as an aqueous dispersion in the presence of a surfactant, sodium dodecyl sulfate (SDS). Four series of the cement paste were tested, and the samples differed in the water/cement (w/c) ratio, cement class, and the presence of MWCNTs. Image analysis tools were used to quantify the cracking patterns and it was proposed to measure parameters, such as the average cluster area, average cluster perimeter, average crack width, and crack density. In order to facilitate the image analysis process, the sample surface was subjected to preparation and using statistical analysis tools it was assessed whether the method of surface preparation affects the way the sample is cracked. The paper also presents the analysis of the relationships that occur between parameters describing the cracking patterns, and also with the physico-mechanical properties of the cement pastes. It was attempted to explain the dependencies using elements of fractal theory and the theory of dispersion systems.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2201 ◽  
Author(s):  
Manuel J. Chinchillas-Chinchillas ◽  
Carlos A. Rosas-Casarez ◽  
Susana P. Arredondo-Rea ◽  
José M. Gómez-Soberón ◽  
Ramón Corral-Higuera

Recycled aggregates (RA) from construction and demolition can be used in permeable concretes (PC), improving the environment. PCs have a significant porous network, their cement paste and the interaction between the paste and the RA establishing their strength. Therefore, it is important to evaluate the porosity in the interfacial transition zones. The porosity of the cement paste, the aggregate and the interfacial transitional zones (ITZ) of a PC with recycled coarse aggregates (RCA) and silica fume (SF) is measured by means of image analysis–scanning electron microscope (IA)-(SEM) and by mapping the chemical elements with an SEM-EDS (energy dispersive spectrometer) detector microanalysis linked to the SEM and, as a contrast, the mercury intrusion porosimetry technique (MIP). In the IA process, a “mask” was created for the aggregate and another for the paste, which determined the porosity percentage (for the anhydrous material and the products of hydration). The results showed that using SF caused a reduction (32%) in the cement paste porosity in comparison with the PC with RA. The use of RA in the PC led to a significant increase (190%) in the porosity at different thicknesses of ITZ compared with the reference PC. Finally, the MIP study shows that the use of SF caused a decrease in the micropores, mesopores and macropores.


1994 ◽  
Vol 370 ◽  
Author(s):  
Yuting Wang ◽  
Sidney Diamond

AbstractCement paste microstructure as revealed in backscatter SEM presents a number of inherent difficulties that interfere with implementing quantitative image analysis. An approach to overcoming these difficulties is presented, involving gray scale segmentation coupled with application of a hole filling algorithm. Using this approach it is possible to isolate the unhydrated and hydrated portions of phenograins separately, and to combine them for analysis of combined phenograins. Pores and coarse calcium hydroxide masses may also be isolated for feature analysis. Results are reported on mature cement pastes prepared at two water:cement ratios (w:c 0.45 and w:c 0.30) and with and without superplasticizer. It was found that superplasticizer greatly reduced the content and the average size of “visible pores” and increased the content and the average size of coarse CH particles compared to corresponding plain pastes. The area per hydrated phenograin was much smaller in the lower w:c ratio pastes and higher in superplasticized pastes. Among the solid features measured, unhydrated cement particles had the smallest circularity values (at about 2.7) and were the most circular features; Hydrated phenograins had the largest circularity values (at 3.5) and were the most elongated features.


2013 ◽  
Vol 405-408 ◽  
pp. 2778-2781
Author(s):  
Xiao Liu ◽  
Zi Ming Wang ◽  
Xu Liang ◽  
Jie Zhu ◽  
Jue Zhao

The synthesis process of polycarboxylate superplasticizer (PCE) by bulk polymerization was investigated. Compared with BPO as initiator, PCE prepared by using AIBN as initiator exhibited better cement paste fluidities. PCE using isopentenyl polyethylene glycol (TPEG) or isobutenyl polyethylene glycol (IPEG) as macromonomer showed excellent fluidities and retaining properties at 80°C and 75°C, respectively. The fumaric acid was more suitable to copolymerize as the third monomer than maleic anhydride. The molecular weight measurements showed that the characteristics of molecular weight and its distribution for all the synthesized samples were in accordance with their cement paste fluidities. The solid-state PCEs can be conveniently dissolved into water to prepare PCE solution with arbitrary concentration, and still with good cement application performances.


Sign in / Sign up

Export Citation Format

Share Document