Evidential reasoning and machine learning-based framework for assessment and prediction of human error factors-induced fire incidents

2022 ◽  
pp. 104000
Author(s):  
R. Ouache ◽  
E. Bakhtavar ◽  
G. Hu ◽  
K. Hewage ◽  
R. Sadiq
2021 ◽  
pp. 002224292199708
Author(s):  
Raji Srinivasan ◽  
Gülen Sarial-Abi

Algorithms increasingly used by brands sometimes fail to perform as expected or even worse, cause harm, causing brand harm crises. Unfortunately, algorithm failures are increasing in frequency. Yet, we know little about consumers’ responses to brands following such brand harm crises. Extending developments in the theory of mind perception, we hypothesize that following a brand harm crisis caused by an algorithm error (vs. human error), consumers will respond less negatively to the brand. We further hypothesize that consumers’ lower mind perception of agency of the algorithm (vs. human) for the error that lowers their perceptions of the algorithm’s responsibility for the harm caused by the error will mediate this relationship. We also hypothesize four moderators of this relationship: two algorithm characteristics, anthropomorphized algorithm and machine learning algorithm and two task characteristics where the algorithm is deployed, subjective (vs. objective) task and interactive (vs. non-interactive) task. We find support for the hypotheses in eight experimental studies including two incentive-compatible studies. We examine the effects of two managerial interventions to manage the aftermath of brand harm crises caused by algorithm errors. The research’s findings advance the literature on brand harm crises, algorithm usage, and algorithmic marketing and generate managerial guidelines to address the aftermath of such brand harm crises.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mirjam Pot ◽  
Nathalie Kieusseyan ◽  
Barbara Prainsack

AbstractThe application of machine learning (ML) technologies in medicine generally but also in radiology more specifically is hoped to improve clinical processes and the provision of healthcare. A central motivation in this regard is to advance patient treatment by reducing human error and increasing the accuracy of prognosis, diagnosis and therapy decisions. There is, however, also increasing awareness about bias in ML technologies and its potentially harmful consequences. Biases refer to systematic distortions of datasets, algorithms, or human decision making. These systematic distortions are understood to have negative effects on the quality of an outcome in terms of accuracy, fairness, or transparency. But biases are not only a technical problem that requires a technical solution. Because they often also have a social dimension, the ‘distorted’ outcomes they yield often have implications for equity. This paper assesses different types of biases that can emerge within applications of ML in radiology, and discusses in what cases such biases are problematic. Drawing upon theories of equity in healthcare, we argue that while some biases are harmful and should be acted upon, others might be unproblematic and even desirable—exactly because they can contribute to overcome inequities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ossama Mahmoud ◽  
Mahmoud El-Sakka ◽  
Barry G. H. Janssen

AbstractMicrovascular blood flow is crucial for tissue and organ function and is often severely affected by diseases. Therefore, investigating the microvasculature under different pathological circumstances is essential to understand the role of the microcirculation in health and sickness. Microvascular blood flow is generally investigated with Intravital Video Microscopy (IVM), and the captured images are stored on a computer for later off-line analysis. The analysis of these images is a manual and challenging process, evaluating experiments very time consuming and susceptible to human error. Since more advanced digital cameras are used in IVM, the experimental data volume will also increase significantly. This study presents a new two-step image processing algorithm that uses a trained Convolutional Neural Network (CNN) to functionally analyze IVM microscopic images without the need for manual analysis. While the first step uses a modified vessel segmentation algorithm to extract the location of vessel-like structures, the second step uses a 3D-CNN to assess whether the vessel-like structures have blood flowing in it or not. We demonstrate that our two-step algorithm can efficiently analyze IVM image data with high accuracy (83%). To our knowledge, this is the first application of machine learning for the functional analysis of microvascular blood flow in vivo.


Author(s):  
Katherine Darveau ◽  
Daniel Hannon ◽  
Chad Foster

There is growing interest in the study and practice of applying data science (DS) and machine learning (ML) to automate decision making in safety-critical industries. As an alternative or augmentation to human review, there are opportunities to explore these methods for classifying aviation operational events by root cause. This study seeks to apply a thoughtful approach to design, compare, and combine rule-based and ML techniques to classify events caused by human error in aircraft/engine assembly, maintenance or operation. Event reports contain a combination of continuous parameters, unstructured text entries, and categorical selections. A Human Factors approach to classifier development prioritizes the evaluation of distinct data features and entry methods to improve modeling. Findings, including the performance of tested models, led to recommendations for the design of textual data collection systems and classification approaches.


Author(s):  
Andrew Higgins ◽  
Inbar Levy ◽  
Thibaut Lienart

This chapter investigates the potential of algorithms and machine learning (ML) to improve decision-making. It considers the best roles for algorithms while maintaining important elements of human judgment. There are essential human skills in judging, but algorithms could help systematize the judicial function and thus reduce the risk of human error, inconsistency, and individual bias. Algorithmic decision-making and ML could in principle mitigate these problems since algorithms are more consistent and rely on and can synthesize more data than a human. Yet, recent proposals to use algorithms in the civil justice system are still underdeveloped and face scepticism. This chapter evaluates the risks and benefits of using algorithms in adjudication by pointing out specific elements of legal skill and expertise and identifying tasks better suited for an algorithm. While there are significant reliability and fairness limitations in using AI to make legal decisions, it is important to recognize that many of these weaknesses already exist to varying degrees in human judicial decision-making.


2020 ◽  
Vol 7 (2) ◽  
pp. 55
Author(s):  
Yasir Suhail ◽  
Madhur Upadhyay ◽  
Aditya Chhibber ◽  
Kshitiz

Extraction of teeth is an important treatment decision in orthodontic practice. An expert system that is able to arrive at suitable treatment decisions can be valuable to clinicians for verifying treatment plans, minimizing human error, training orthodontists, and improving reliability. In this work, we train a number of machine learning models for this prediction task using data for 287 patients, evaluated independently by five different orthodontists. We demonstrate why ensemble methods are particularly suited for this task. We evaluate the performance of the machine learning models and interpret the training behavior. We show that the results for our model are close to the level of agreement between different orthodontists.


Author(s):  
Oliver J. Fisher ◽  
Ahmed Rady ◽  
Aly A. A. El-Banna ◽  
Nicholas J. Watson ◽  
Haitham H. Emaish

Egyptian cotton is one of the most important commodities to the Egyptian economy and is renowned globally for its quality, which is currently graded by manual inspection. This has several drawbacks including significant labour requirement, low inspection efficiency, and influence from inspection conditions such as light and human subjectivity. This current work uses a low-cost colour vision system, combined with machine learning to predict the cotton lint grade of the cultivars Giza 86, 97, 90, 94 and 96. Unsupervised and supervised machine learning approaches were explored and compared. Three different supervised learning algorithms were evaluated: linear discriminant analysis, decision trees and ensemble modelling. The highest accuracy models (77.3-98.2%) used an ensemble modelling technique to classify samples within the Egyptian cotton grades: Fully Good, Good, Fully Good Fair, Good Fair and Fully Fair. The unsupervised learning technique k-means showed that human error is more likely to occur when classifying lint belonging to the higher quality grades and underlined the need for an intelligent system to replace manual inspection.


2021 ◽  
pp. 153537022110265
Author(s):  
David Le ◽  
Taeyoon Son ◽  
Xincheng Yao

Optical coherence tomography angiography (OCTA) offers a noninvasive label-free solution for imaging retinal vasculatures at the capillary level resolution. In principle, improved resolution implies a better chance to reveal subtle microvascular distortions associated with eye diseases that are asymptomatic in early stages. However, massive screening requires experienced clinicians to manually examine retinal images, which may result in human error and hinder objective screening. Recently, quantitative OCTA features have been developed to standardize and document retinal vascular changes. The feasibility of using quantitative OCTA features for machine learning classification of different retinopathies has been demonstrated. Deep learning-based applications have also been explored for automatic OCTA image analysis and disease classification. In this article, we summarize recent developments of quantitative OCTA features, machine learning image analysis, and classification.


2021 ◽  
Author(s):  
Tlamelo Emmanuel ◽  
Thabiso Maupong ◽  
Dimane Mpoeleng ◽  
Thabo Semong ◽  
Mphago Banyatsang ◽  
...  

Abstract Machine learning has been the corner stone in analysing and extracting information from data and often a problem of missing values is encountered. Missing values occur as a result of various factors like missing completely at random, missing at random or missing not at random. All these may be as a result of system malfunction during data collection or human error during data pre-processing. Nevertheless, it is important to deal with missing values before analysing data since ignoring or omitting missing values may result in biased or misinformed analysis. In literature there have been several proposals for handling missing values. In this paper we aggregate some of the literature on missing data particularly focusing on machine learning techniques. We also give insight on how the machine learning approaches work by highlighting the key features of the proposed techniques, how they perform, their limitations and the kind of data they are most suitable for. Finally, we experiment on the K nearest neighbor and random forest imputation techniques on novel power plant induced fan data and offer some possible future research direction.


Sign in / Sign up

Export Citation Format

Share Document