Reaction chemistry of noble metal porphyrins in solutions as a foundation for practical applications

2020 ◽  
Vol 926 ◽  
pp. 121484
Author(s):  
Elena Yu. Tyulyaeva
2019 ◽  
Author(s):  
RAN DU ◽  
YUE HU ◽  
René Hübner ◽  
Jan-Ole Joswig ◽  
Xuelin Fan ◽  
...  

<div>Noble metal foams (NMFs) are a new class of functional porous materials featuring properties of both noble metals and monolithic porous materials, providing impressive prospects in catalysis, bio-sensing, plasmonic technologies, etc...Among reported synthetic methods to date, the sol-gel approach manifests overwhelming advantages for versatile synthesis of controlled nanostructured NMFs under mild condition. However, limited gelation methods and insufficient understanding of the underlying mechanism retards structure/composition manipulation of NMFs, hampering ondemand designing for practical applications. Herein highly tunable NMFs are fabricated at room temperature by activating specific-ion effects and regulating ion-nanoparticle interactions, affording various single/alloy NMFs with adjustable compositions (Au, Ag, Pd, Pt), ligament sizes (3.1~142.0 nm), and special morphologies. Their superior performance in programmable self-propulsion devices and electrocatalytic alcohol oxidation are demonstrated. This study provides not only a conceptually new route to fabricate and manipulate functional NMFs, but also an overall picture in understanding the gelation mechanism. It may pave the way for on-target designing versatile NMFs for various applications.</div>


2019 ◽  
Vol 48 (29) ◽  
pp. 11122-11135 ◽  
Author(s):  
Xian Yan ◽  
Zhiliang Jin ◽  
Yupeng Zhang ◽  
Yongke Zhang ◽  
Hong Yuan

In terms of energy acquisition, research on the photocatalytic cracking of water to produce hydrogen has become a hub for us to make a transition from theoretical research to practical applications.


2021 ◽  
Vol 9 ◽  
Author(s):  
Han Yu ◽  
Jingbo Yu ◽  
Linlin Li ◽  
Yujia Zhang ◽  
Shuquan Xin ◽  
...  

The detection of biomolecules using various biosensors with excellent sensitivity, selectivity, stability, and reproducibility, is of great significance in the analytical and biomedical fields toward achieving their practical applications. Noble metal nanoparticles are favorable candidates due to their unique optical, surface electrical effect, and catalytic properties. Among these noble metal nanoparticles, platinum nanoparticles (Pt NPs) have been widely employed for the detection of bioactive substances such as glucose, glutamic acid, and hormones. However, there is still a long way to go before the potential challenges in the practical applications of biomolecules are fully overcome. Bearing this in mind, combined with our research experience, we summarized the recent progress of the Pt NP-based biosensors and highlighted the current problems that exist in their practical applications. The current review would provide fundamental guidance for future applications using the Pt NP-based biosensors in food, agricultural, and medical fields.


Nanoscale ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 3506-3513 ◽  
Author(s):  
Manyi Gao ◽  
Yongsheng Yu ◽  
Weiwei Yang ◽  
Ji Li ◽  
Shichong Xu ◽  
...  

The development of a robust and low-cost non-noble metal catalyst for photocatalytic H2 evolution is of great importance for practical applications.


2019 ◽  
Author(s):  
RAN DU ◽  
YUE HU ◽  
René Hübner ◽  
Jan-Ole Joswig ◽  
Xuelin Fan ◽  
...  

<div>Noble metal foams (NMFs) are a new class of functional porous materials featuring properties of both noble metals and monolithic porous materials, providing impressive prospects in catalysis, bio-sensing, plasmonic technologies, etc...Among reported synthetic methods to date, the sol-gel approach manifests overwhelming advantages for versatile synthesis of controlled nanostructured NMFs under mild condition. However, limited gelation methods and insufficient understanding of the underlying mechanism retards structure/composition manipulation of NMFs, hampering ondemand designing for practical applications. Herein highly tunable NMFs are fabricated at room temperature by activating specific-ion effects and regulating ion-nanoparticle interactions, affording various single/alloy NMFs with adjustable compositions (Au, Ag, Pd, Pt), ligament sizes (3.1~142.0 nm), and special morphologies. Their superior performance in programmable self-propulsion devices and electrocatalytic alcohol oxidation are demonstrated. This study provides not only a conceptually new route to fabricate and manipulate functional NMFs, but also an overall picture in understanding the gelation mechanism. It may pave the way for on-target designing versatile NMFs for various applications.</div>


ChemInform ◽  
2010 ◽  
Vol 27 (20) ◽  
pp. no-no
Author(s):  
J. W. BUCHLER ◽  
C. DREHER ◽  
F. M. KUENZEL

2020 ◽  
Vol 24 (8) ◽  
pp. 855-869
Author(s):  
Jian-Long Liu ◽  
Bo Jiang ◽  
Guo-Zhi Han

Noble metal microparticles have been employed as desired catalysts for a number of classical organic chemical reactions due to their unique physicochemical properties. Currently, in order to obtain more benefits for practical applications such as low cost, easy separation and high selectivity, many efforts of scientists are devoted to constructing composite microparticles in which noble metals are coupled with other materials. In this paper, we summarize some recent research developments on noble metal based microparticles for their catalytic applications in organic synthesis. Among them, application of the gold and silver based microparticles is the focus of this paper for their relatively low cost and the diversity of preparation methods. Furthermore, the challenges and prospects of noble metal based microparticles for their applications in organic catalysis are also discussed.


Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1176
Author(s):  
Priyanka Verma ◽  
Daniel J. Stewart ◽  
Robert Raja

The efficient conversion of carbon dioxide (CO2) to high-value chemicals using renewable solar energy is a highly attractive but very challenging process that is used to address ever-growing energy demands and environmental issues. In recent years, metal–organic frameworks (MOFs) have received significant research attention owing to their tuneability in terms of their composition, structure, and multifunctional characteristics. The functionalisation of MOFs by metal nanoparticles (NPs) is a promising approach used to enhance their light absorption and photocatalytic activity. The efficient charge separation and strong CO2 binding affinity of hybrid MOF-based photocatalysts facilitate the CO2 conversion process. This review summarises the latest advancements involving noble metal, non-noble-metal, and miscellaneous species functionalised MOF-based hybrid photocatalysts for the reduction of CO2 to carbon monoxide (CO) and other value-added chemicals. The novel synthetic strategies and their corresponding structure–property relationships have also been discussed for solar-to-chemical energy conversion. Furthermore, the current challenges and prospects in practical applications are also highlighted for sustainable energy production.


2015 ◽  
Vol 4 (3) ◽  
Author(s):  
Hongyan Liang ◽  
Hong Wei ◽  
Deng Pan ◽  
Hongxing Xu

AbstractNoble metal nanostructures have drawn attentions of researchers in many fields due to their particular optical properties. Controlling the metal nanostructures’ size, shape, material, assembly, and surrounding environment can tune their unique plasmonic features that are important for practical applications. In this review, we firstly discuss some novel metal nanostructures synthesized through wet chemical methods and their fundamental plasmonic properties. Then, some applications of these chemically synthesized nanostructures in plasmonics are highlighted, including surface-enhanced Raman spectroscopy, plasmonic sensing, optical nanoantennas, and plasmonic circuitry. Plasmonic nanostructures provide the ways to manipulate light at the nanometer scale and open the prospects of developing nanophotonic devices for sensing and information technologies.


Sign in / Sign up

Export Citation Format

Share Document