Plasma metabolomic profiles reveal regulatory effect of Chitosan oligosaccharides on loperamide-induced constipation in mice

Author(s):  
Xiaoyu Zhang ◽  
Baifei Hu ◽  
Guangjun Sun ◽  
Junping Zheng ◽  
Haiming Hu ◽  
...  
1989 ◽  
Vol 120 (3_Suppl) ◽  
pp. S183-S185
Author(s):  
H. MUELLER ◽  
T. RABE ◽  
B. HAUFF ◽  
L. KIESEL ◽  
B. RUNNEBAUM

2019 ◽  
Author(s):  
Sven Basa ◽  
Malathi Nampally ◽  
Talita Honorato ◽  
Subha Narayan Das ◽  
Appa Rao Podile ◽  
...  

The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of <i>β</i>-1,4-linked glucosamine (deacetylated/D) and <i>N</i>-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially-acetylated chitosan oligosaccharides from a chitosan polymer (DA=35%, DP<sub>w</sub>=905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4–DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, <a>but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective</a>. We then compared all four mono-acetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as <i>bona fide</i> information-carrying molecules


2019 ◽  
Author(s):  
Sven Basa ◽  
Malathi Nampally ◽  
Talita Honorato ◽  
Subha Narayan Das ◽  
Appa Rao Podile ◽  
...  

The biological activity of chitosans depends on their degree of polymerization (DP) and degree of acetylation (DA). However, information could also be carried by the pattern of acetylation (PA): the sequence of <i>β</i>-1,4-linked glucosamine (deacetylated/D) and <i>N</i>-acetylglucosamine (acetylated/A) units. To address this hypothesis, we prepared partially-acetylated chitosan oligosaccharides from a chitosan polymer (DA=35%, DP<sub>w</sub>=905) using recombinant chitosan hydrolases with distinct substrate and cleavage specificities. The mixtures were separated into fractions DP4–DP12, which were tested for elicitor and priming activities in rice cells. We confirmed that both activities were influenced by DP, <a>but also observed apparent DA-dependent priming activity, with the ADDD+DADD fraction proving remarkably effective</a>. We then compared all four mono-acetylated tetramers prepared using different chitin deacetylases and observed significant differences in priming activity. This demonstrates for the first time that PA influences the biological activity of chitosans, which can now be recognized as <i>bona fide</i> information-carrying molecules


2020 ◽  
Vol 26 (29) ◽  
pp. 3508-3521 ◽  
Author(s):  
Xiaochen Jia ◽  
Mijanur R. Rajib ◽  
Heng Yin

Background: Application of chitin attracts much attention in the past decades as the second abundant polysaccharides in the world after cellulose. Chitin oligosaccharides (CTOS) and its deacetylated derivative chitosan oligosaccharides (COS) were shown great potentiality in agriculture by enhancing plant resistance to abiotic or biotic stresses, promoting plant growth and yield, improving fruits quality and storage, etc. Those applications have already served huge economic and social benefits for many years. However, the recognition mode and functional mechanism of CTOS and COS on plants have gradually revealed just in recent years. Objective: Recognition pattern and functional mechanism of CTOS and COS in plant together with application status of COS in agricultural production will be well described in this review. By which we wish to promote further development and application of CTOS and COS–related products in the field.


2021 ◽  
Author(s):  
Mei Ji ◽  
Cheng Fang ◽  
Wei Jia ◽  
Hai Du ◽  
Yan Xu

Ethanol (EtOH) is the main risk factor for alcoholic liver disease. However, fermented alcoholic beverages contain not only ethanol but also various volatile compounds. Currently, effects of volatile compounds in...


1999 ◽  
Vol 40 (7) ◽  
pp. 1312-1316 ◽  
Author(s):  
Hideya Ando ◽  
Yoko Funasaka ◽  
Masahiro Oka ◽  
Akiko Ohashi ◽  
Minao Furumura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document