LCV-Pluronic F-127 dosimeter for UV light dose distribution measurements

Author(s):  
M. Kozicki ◽  
M. Bartosiak ◽  
M. Dudek ◽  
S. Kadlubowski
2011 ◽  
Vol 80 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Vladislav G. Petin ◽  
Ivan I. Morozov ◽  
Jin Kyu Kim ◽  
Maria A. Semkina

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3628-3628
Author(s):  
Morris A. Blajchman ◽  
Junzhi Li ◽  
Myron Kulczycky ◽  
Zofia Woskowska ◽  
Henry Pieters ◽  
...  

Abstract Testing platelet in vivo activity in an animal model remains an attractive approach for the pre-clinical evaluation of platelets that have been treated or manipulated by a new technology or product. Mirasol PRT™ is a novel pathogen reduction technology based on riboflavin photochemistry for the safety of blood component transfusion. In this study, rabbit platelets were tested for viability after exposure to 2, 3 and 5 J/cm2 of UV light in the presence of 50 μM riboflavin in a polypropylene bag (Sangewald). In order to minimize the potential variations caused by different isotope labeling and by individual rabbit differences, a pool of platelets was split into two for the treatment and control groups. Eight to ten rabbits were used in each group as recipients for each dose of light. Half of the rabbits in the group received concurrent injections of 111In-labeled PRT treated platelets and 51Cr-labeled control platelets. The other half received 51Cr-labeled PRT-platelets and 111In-labeled control platelets. The recovery and survival times were determined post-infusion for both treated and control platelets using the multiple hit model (γ-function) and data from the various groups were pooled and analyzed. The platelets treated with 2, 3 and 5 J/cm2 retained recoveries of 63.2% (SD=17, n=9), 55.3% (SD=10.8, n=10) and 44.0% (SD=12.8, n=8) of control platelets, respectively. The survival times of the platelets treated with 2, 3 and 5 J/cm2 were 59.5% (SD=15.7, n=9), 60.1% (SD=19.5, n=10) and 55.1% (SD=18.1, n=8) of control, respectively. Both values of recovery and survival times were correlated with UV light dose with correlation coefficients of 0.90 (r2) and 0.73 (r2) respectively. In a subsequent single site human clinical study, human platelets were treated with UV light at a dose of 3 J/cm2 in a Sangewald bag, radiolabelled with Indium at day 5 of storage and infused into autologous subjects. Recovery and survival values for these subjects were obtained. At a dose of 3 J/cm2, recovery and survival activities retained 54.9% (SD=3.1, n=4) and 71.7% (SD=21.5) of control platelets, respectively. Good agreement with observations made in the rabbit model was thus obtained. Based on this work, a light dose was selected for standard treatment of human platelets using the Mirasol PRT system. In conclusion, this kinetic study on UV light dose in an animal model was predictive of human platelet in vivo activity, making it a potentially valuable model for estimating human clinical trial outcomes for new platelet storage and treatment methodologies.


2017 ◽  
Author(s):  
Timothy C. Zhu ◽  
Michele M. Kim ◽  
Yi-Hong Ong ◽  
Rozhin Penjweini ◽  
Andreea Dimofte ◽  
...  

2003 ◽  
Vol 60 (5) ◽  
pp. 644-649 ◽  
Author(s):  
L Schwartz ◽  
P.Y Boëlle ◽  
F D’hermies ◽  
G Ledanois ◽  
J Virmont

Author(s):  
Debby A. Jennings ◽  
Michael J. Morykwas ◽  
Louis C. Argenta

Grafts of cultured allogenic or autogenic keratlnocytes have proven to be an effective treatment of chronic wounds and burns. This study utilized a collagen substrate for keratinocyte and fibroblast attachment. The substrate provided mechanical stability and augmented graft manipulation onto the wound bed. Graft integrity was confirmed by light and transmission electron microscopy.Bovine Type I dermal collagen sheets (100 μm thick) were crosslinked with 254 nm UV light (13.5 Joules/cm2) to improve mechanical properties and reduce degradation. A single cell suspension of third passage neonatal foreskin fibroblasts were plated onto the collagen. Five days later, a single cell suspension of first passage neonatal foreskin keratinocytes were plated on the opposite side of the collagen. The grafts were cultured for one month.The grafts were fixed in phosphate buffered 4% formaldehyde/1% glutaraldehyde for 24 hours. Graft pieces were then washed in 0.13 M phosphate buffer, post-fixed in 1% osmium tetroxide, dehydrated, and embedded in Polybed 812.


Author(s):  
W. Engel ◽  
M. Kordesch ◽  
A. M. Bradshaw ◽  
E. Zeitler

Photoelectron microscopy is as old as electron microscopy itself. Electrons liberated from the object surface by photons are utilized to form an image that is a map of the object's emissivity. This physical property is a function of many parameters, some depending on the physical features of the objects and others on the conditions of the instrument rendering the image.The electron-optical situation is tricky, since the lateral resolution increases with the electric field strength at the object's surface. This, in turn, leads to small distances between the electrodes, restricting the photon flux that should be high for the sake of resolution.The electron-optical development came to fruition in the sixties. Figure 1a shows a typical photoelectron image of a polycrystalline tantalum sample irradiated by the UV light of a high-pressure mercury lamp.


Author(s):  
Ś Lhoták ◽  
I. Alexopoulou ◽  
G. T. Simon

Various kidney diseases are characterized by the presence of dense deposits in the glomeruli. The type(s) of immunoglobulins (Igs) present in the dense deposits are characteristic of the disease. The accurate Identification of the deposits is therefore of utmost diagnostic and prognostic importance. Immunofluorescence (IF) used routinely at the light microscopical level is unable to detect and characterize small deposits found in early stages of glomerulonephritis. Although conventional TEM is able to localize such deposits, it is not capable of determining their nature. It was therefore attempted to immunolabel at EM level IgG, IgA IgM, C3, fibrinogen and kappa and lambda Ig light chains commonly found in glomerular deposits on routinely fixed ( 2% glutaraldehyde (GA) in 0.1M cacodylate buffer) kidney biopsies.The unosmicated tissue was embedded in LR White resin polymerized by UV light at -10°C. A postembedding immunogold technique was employed


2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


Sign in / Sign up

Export Citation Format

Share Document