Impedance Mismatch-Based Enhancement of Broadband Reflectance of Tungsten with Bio-Inspired Multilayers

Author(s):  
Amin Balazadeh Koucheh ◽  
Muhammed Ali Kecebas ◽  
Kursat Sendur
Keyword(s):  
2011 ◽  
Vol 308-310 ◽  
pp. 2279-2285
Author(s):  
Wei Chen Lee ◽  
Hill Wu

The electrical characteristics of an interconnection system, which include impedance, insertion loss, and return loss, can greatly affect its performance as the signal speed increases. The objective of this research was to understand the discrepancy between the computer-aided analysis and measurement results of an interconnection system, so that a more accurate prediction of the electrical characteristics of this system can be made during the design phase. It was discovered that in both the time and frequency domain the computer-aided analysis results were consistent with the measurement results. Given these conclusions the simulation model was modified to improve the impedance mismatch within the interconnection system. It was found that by properly designing the antipad, the impedance mismatch can be greatly reduced.


2011 ◽  
Vol 483 ◽  
pp. 305-310 ◽  
Author(s):  
Chia Yen Lee ◽  
Chang Hsien Tai ◽  
Chin Lung Chang ◽  
Chien Hsiung Tsai ◽  
Yao Nan Wang ◽  
...  

This study designs and analyzes an impedance pump utilizing an electromagnetic actuator. The pump is designed to have three major components, namely a lower glass substrate patterned with a copper micro-coil, a microchannel, and an upper glass cover plate attached a magnetic PDMS diaphragm. When a current is passed through the micro-coil, an electromagnetic force is established between the coil and the magnetic diaphragm. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which results in a net flow. Overall, the simulated results reveal that a net flow rate of 52.8 μl/min can be obtained using a diaphragm displacement of 31.5 μm induced by a micro-coil input current of 0.5 A. The impedance pump proposed in this study provides a valuable contribution to the ongoing development of Lab-on-Chips (LoCs) systems.


2014 ◽  
Vol 49 (3) ◽  
pp. 608-621 ◽  
Author(s):  
Youngchang Yoon ◽  
Hyoungsoo Kim ◽  
Hyungwook Kim ◽  
Kun-Seok Lee ◽  
Chang-Ho Lee ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1473
Author(s):  
Aleksandr Vasjanov ◽  
Vaidotas Barzdenas

In the era of technology and communication, printed circuit boards (PCBs) can be found in a myriad of devices—from ordinary household items, to state of the art custom metrology equipment. Different types of component for wireless communications are available and come in various packages, supplied by multiple manufacturers. The signal landpads for some high-frequency connectors and components, encapsulated in larger packages, are usually wider than the controlled impedance trace, thereby introducing unwanted impedance mismatch and resulting in signal reflections. The component land pad and microstrip width a discrepancy issue can be found in both complex high-density industrial devices and system-level academic research papers. This paper addresses the topic of compensating discontinuities, introduced by signal pads, which are wider than the target impedance microstrip, characterizes the difference between the compensated and uncompensated microstrip with discontinuity, and proposes a generalized guideline on compensating for the introduced impedance change in multilayer PCBs. The compensation method is based upon carefully designing the stackup of the PCB allowing for a reference plane cutout under the discontinuity to even out the impedance mismatch. A 6-layer PCB with IT180A dielectric material containing three structures has been manufactured and characterized using an Agilent E8363B vector network analyzer (VNA). A 4–12 dB improvement in S11 response in the whole frequency range up to 10 GHz, compared to that when no compensation has been applied, was observed.


2015 ◽  
Vol 9 (2) ◽  
pp. 395-402 ◽  
Author(s):  
Swati Yadav ◽  
Anil Kumar Gautam ◽  
Binod Kumar Kanaujia

To restrict electromagnetic interference at WiMAX (3.3–3.7 GHz) and wireless local area network (WLAN) (5.15–5.825 GHz) bands operating within ultra wide bandwidth (UWB) band, a novel design of lamp-shaped UWB microstrip antenna with dual band-notched characteristics is presented. The proposed antenna is composed of a lamp-shaped radiating patch with two rectangular ground planes on both the sides of the radiator with the gap of 0.57 mm. To improve impedance mismatch at middle frequencies, two triangular strips one at each of the ground plane are added; whereas a rectangular slot is etched in the radiating patch to remove impedance mismatch at higher frequencies of the UWB band. Furthermore, an L-shaped slot in the radiator and two L-shaped slots in the ground plane are used to restrict electromagnetic interference (EMI) at WiMAX and WLAN bands, respectively, without affecting the electrical performance of the UWB antenna. Effects of the key parameters on the frequency range of the notched bands are also investigated. The proposed design shows a measured impedance bandwidth of 12.5 GHz (2.7–14.4 GHz), with the two band-notched bands of 3.0–3.9 and 4.9–5.8 GHz. The antenna is suitable to be integrated within the portable UWB devices without EMI interference at WiMAX and WLAN bands.


Sign in / Sign up

Export Citation Format

Share Document