Effect of cold water immersion on recovery and limb blood flow following high-intensity cycling

2009 ◽  
Vol 12 ◽  
pp. S23
Author(s):  
J. Vaile ◽  
B. Stefanovic ◽  
C. O’Hagan ◽  
M. Walker ◽  
N. Gill ◽  
...  
2017 ◽  
Vol 17 (5) ◽  
pp. 519-529 ◽  
Author(s):  
Chris Mawhinney ◽  
Helen Jones ◽  
David A. Low ◽  
Daniel J. Green ◽  
Glyn Howatson ◽  
...  

2010 ◽  
Vol 45 (10) ◽  
pp. 825-829 ◽  
Author(s):  
J. Vaile ◽  
C. O'Hagan ◽  
B. Stefanovic ◽  
M. Walker ◽  
N. Gill ◽  
...  

1988 ◽  
Vol 65 (6) ◽  
pp. 2709-2713 ◽  
Author(s):  
K. D. Mittleman ◽  
I. B. Mekjavic

Recent studies using inanimate and animal models suggest that the afterdrop observed upon rewarming from hypothermia is based entirely on physical laws of heat flow without involvement of the returning cooled blood from the limbs. During the investigation of thermoregulatory responses to cold water immersion (15 degrees C), blood flow to the limbs (minimized by the effects of hydrostatic pressure and vasoconstriction) was occluded in 17 male subjects (age, 29.0 +/- 3.3 yr). Comparisons of rectal (Tre) and esophageal temperature (Tes) responses were made during the 5 min before occlusion, during the 10-min occlusion period, and for 5 min immediately after the release of the cuffs (postocclusion). In the preocclusion phase, Tre and Tes showed similar cooling rates. The occlusion of blood flow to the extremities significantly arrested the cooling of Tes (P less than 0.05) with little effect on Tre. Upon release of the pressure cuffs, the returning extremity blood flow resulted in an increased rate of cooling, that was three times greater at the esophageal site (-0:149 +/- 0.052 vs. -0.050 +/- 0.026 degrees C.min-1). These results suggest that the cooled peripheral circulation, minimized during cold water immersion, may dramatically affect esophageal temperature and the complete neglect of the circulatory component to the afterdrop phenomenon is not warranted.


2013 ◽  
Vol 114 (1) ◽  
pp. 147-163 ◽  
Author(s):  
Jamie Stanley ◽  
Jonathan M. Peake ◽  
Jeff S. Coombes ◽  
Martin Buchheit

2016 ◽  
Vol 41 (11) ◽  
pp. 1163-1170 ◽  
Author(s):  
Avina McCarthy ◽  
James Mulligan ◽  
Mikel Egaña

A brief cold water immersion between 2 continuous high-intensity exercise bouts improves the performance of the latter compared with passive recovery in the heat. We investigated if this effect is apparent in normothermic conditions (∼19 °C), employing an intermittent high-intensity exercise designed to reflect the work performed at the high-intensity domain in team sports. Fifteen young active men completed 2 exhaustive cycling protocols (Ex1 and Ex2: 12 min at 85% ventilatory threshold (VT) and then an intermittent exercise alternating 30-s at 40% peak power (Ppeak) and 30 s at 90% Ppeak to exhaustion) separated by 15 min of (i) passive rest, (ii) 5-min cold-water immersion at 8 °C, and (iii) 10-min cold-water immersion at 8 °C. Core temperature, heart rate, rates of perceived exertion, and oxygen uptake kinetics were not different during Ex1 among conditions. Time to failure during the intermittent exercise was significantly (P < 0.05) longer during Ex2 following the 5- and 10-min cold-water immersions (7.2 ± 3.5 min and 7.3 ± 3.3 min, respectively) compared with passive rest (5.8 ± 3.1 min). Core temperature, heart rate, and rates of perceived exertion were significantly (P < 0.05) lower during most periods of Ex2 after both cold-water immersions compared with passive rest. The time constant of phase II oxygen uptake response during the 85% VT bout of Ex2 was not different among the 3 conditions. A postexercise, 5- to 10-min cold-water immersion increases subsequent intermittent high-intensity exercise compared with passive rest in normothermia due, at least in part, to reductions in core temperature, circulatory strain, and effort perception.


2016 ◽  
Vol 21 (5) ◽  
pp. 793-804 ◽  
Author(s):  
Paula Fernandes Aguiar ◽  
Sílvia Mourão Magalhães ◽  
Ivana Alice Teixeira Fonseca ◽  
Vanessa Batista da Costa Santos ◽  
Mariana Aguiar de Matos ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Moh Nanang Himawan Kusuma ◽  
Muh. Syafei ◽  
Saryono Saryono ◽  
Wildan Qohar

Weight Training adalah metode latihan untuk meningkatkan kekuatan dan kinerja neuromuskular melalui proses hyperthropy, namun juga meningkatkan produksi Laktat, menyebabkan inflamasi otot, menggangu metabolisme tubuh sehingga menurunkan performa. Stimulus dingin pada Cold Water Immersion dapat mengurangi laju metabolisme, menyerap suhu jaringan lokal, menurunkan kepekaan saraf dan mengurangi rasa nyeri sehingga menurunkan resiko terjadinya cidera musculoskeletal dan kelainan metabolisme. Penelitian ini bertujuan menguji Pengaruh Cold Water Immersion 5°C (CWI5°C) terhadap Laktat pada Darah, Nyeri Otot, Fleksibilitas dan Tingkat Stress pasca Latihan Berbeban Intensitas Sub Maksimal. Pre- dan Posttest menggunakan Kelompok Kontrol dengan pendekatan Cross Sectional. Sebanyak 15 Sampel kelompok Eksperimen diberikan CWI5°C selama 15 menit setelah Latihan Berbeban, sedangkan 15 Sampel Kelompok Kontrol menggunakan Metode Statis Stretching (SS) salama 15 menit. Uji prasarat menggunakan Shapiro-wilk, sedangkan Analisa Bivariate menggunakan Paired Sample T-test dan Independent Sample T-tes. hasil yang didapatkan bahwa metode CWI5°C lebih cepat menurunkan Kadar Laktat (t=2.32±0.27, p=0,001), mengurangi Nyeri Otot (t=5.32±1.07, p=0,003) dan menurunkan Stress (t=13.02±1.27, p=0,001), sedangkan SS meningkatkan Fleksibilitas (t=17.98±2.76, p=0,001). Dapat disimpulkan Cold Water Immersion suhu 5°C selama 15 menit mempercepat Proses Recovery, mengurangi Inflamasi Otot dan menurunkan Stress, sedangkan Statis Stretching meningkatkan Fleksibilitas setelah Latihan Berbeban Intensitas Sub Maksimal. AbstractStrength is one of the main components of bio-motor affecting the development of other physical components. Strength training improves strength and neuromuscular coordination, muscle hypertrophy, contrary causes physical stressor, muscle inflammation, produce muscular disease, increases lactate levels, interferes body metabolism, thus decreases performance. Appropriate recovery methods can prevent over-training, musculoskeletal injuries, stress levels. The study examines the effect of cold water immersion 5°C (CWI5°C) on blood lactate, muscle soreness, flexibility, and stress level after high-intensity resistance training. The study design was pre- and posttest using a cross-sectional approach with a control group. It gave selected 15 samples treated with CWI5°C for 15 minutes directly after high-intensity resistance training, while control samples with static stretching for 15 minutes. The prerequisite test uses Shapiro-Wilk, while the bivariate analysis uses paired sample T-test and independent sample T-test. The prerequisite test uses Shapiro-Wilk, while the bivariate analysis uses paired sample T-test and independent sample T-test. The results showed there were significant differences between the two groups (p=0.001). The CWI-5 C method recover lactate levels faster (p = 0.001), reduces muscle pain (p=0.003), decrease stress (p=0.002), while SS increase muscle flexibility (p=0.001). We can conclude that 15°C cold water immersion for 15 minutes accelerates recovery, reduce muscle inflammation and stress level, while static stretching increases flexibility after high-intensity resistance training.


2019 ◽  
Vol 11 (1) ◽  
pp. 189-192
Author(s):  
Ritva S. Taipale ◽  
Johanna K. Ihalainen ◽  
Phillip J. Jones ◽  
Antti A. Mero ◽  
Keijo Häkkinen ◽  
...  

SummaryStudy aim: The purpose of this study was to compare the effects of cold-water immersion (CWI) vs. active recovery performed after each individual strength and endurance training session over a 10-week period of high-intensity combined strength and endurance training.Materials and methods: Seventeen healthy men completed 10 weeks of high-intensity combined strength and endurance training. One group (AR, n = 10) completed active recovery that included 15 minutes of running at 30–40% VO2max after every strength training session while the other group (CWI, n = 7) completed 5 minutes of active recovery (at the same intensity as the AR group) followed by 10 minutes of cold-water (12 ± 1°C) immersion. During CWI, the subjects were seated passively during the 10 minutes of cold-water immersion and the water level remained just below the pectoral muscles. Muscle strength and power were measured by isometric bilateral, 1 repetition maximum, leg press (ISOM LP) and countermovement jump (CMJ) height. Endurance performance was measured by a 3000 m running time trial. Serum testosterone, cortisol, and IGF-1 were assessed from venous blood samples.Results: ISOM LP and CMJ increased significantly over the training period, but 3000 m running time increased only marginally. Serum testosterone, cortisol, and IGF-1 remained unchanged over the intervention period. No differences between the groups were observed.Conclusions: AR and CWI were equally effective during 10 weeks of high-intensity combined strength and endurance training. Thus, physically active individuals participating in high-intensity combined strength and endurance training should use the recovery method they prefer.


Sign in / Sign up

Export Citation Format

Share Document