Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic event

2013 ◽  
Vol 64 ◽  
pp. 125-135 ◽  
Author(s):  
Zhihua Yang ◽  
Hengxing Lan ◽  
Yongshuang Zhang ◽  
Xing Gao ◽  
Langping Li
Author(s):  
Xiangshao Kong ◽  
Shuangxi Xu ◽  
Weiguo Wu ◽  
Xiaobin Li ◽  
Yuanzhou Zheng

For the warship cabin under explosive loading, the detail structure in cabin corner can easily be torn by the high-strength shock wave converging at the structure corner. In order to avoid that the crevasse occurs at the corner firstly, three strengthening structure forms were designed for the cabin corner: thickening connection, circular connection and inclined plate connection. Failure process of the joint in the two-cabin structure under the explosive loading was simulated by the nonlinear dynamic software DYTRAN. Comparing the response of the corner strengthening structure to that of the conventional structure, it was concluded that three strengthening structure forms changed failure mode of the cabin structure effectively and the crevasse initiated at the explosion pressure release hole on the transverse bulkhead, which reduced the tearing of the cabin corner. To seek more reasonable corner strengthening structure, the pressure and the stress on the bulkhead under the explosive loading of the three corner strengthening structures were compared. The results showed the inclined plate connection can prevent the shock wave from concentrating at the corner, decrease the stress on the longitudinal bulkhead, and resist the shock wave spreading into the inner cabins most effectively in the three strengthening forms.


2006 ◽  
Vol 324-325 ◽  
pp. 523-526 ◽  
Author(s):  
Gang Chen ◽  
Qing Ping Zhang ◽  
Zhong Fu Chen ◽  
Si Zhong Li ◽  
Yu Ze Chen

Cylindrical shell is a kind of common used structure in engineering. Interest in the response of cylindrical shells to local impact loading has increased over the last few years. A structure always endures working load more or less. For a cylindrical shell, the working load commonly is internally pressure. In this paper, a numeral simulation of wedge block impact internally Pressured cylindrical shell was carried out. The dynamic failure process of the structure was obtained. The consistency between experimental observation and numerical simulation is satisfactory.


2014 ◽  
Vol 936 ◽  
pp. 1331-1335
Author(s):  
Zhen Lei ◽  
Yong Wang ◽  
Jun Tong Qu

The externally bonded FRP is an effective strengthening technique, which is mainly verified through laboratory tests. In this paper, numerical analysis models were established in ABAQUS respectively based on an experimental scaled three-story confined masonry structures before and after strengthened with BFRP. Then dynamical analysis considering material nonlinearity, geometric nonlinearity and contact nonlinearity was carried out on these two models. Here, representative volume element method was used to simplify the simulation of masonry. Besides, concrete damage plasticity model was adopted to simulate the structural damage and failure process. The reliability and accuracy of nonlinear dynamic finite analysis were validated by comparing the numerical simulation results and experimental results in terms of dynamic property, displacement and acceleration response and the maximum base shear.


2021 ◽  
Author(s):  
André Burnol ◽  
Antoine Armandine Les Landes ◽  
Hideo Aochi ◽  
Julie Maury ◽  
Cécile Allanic

<p>On 11 November 2019,  a Ml 5.2 earthquake broke the Rouvière fault in southeast France at Le Teil, close to the Rhone river. This recent seismic event is the strongest earthquake ever felt in France since the Arette (Pyrenees) earthquake in 1967. <em>A priori, </em>it is also a historically unprecedented earthquake in the surrounding low strain and stable continental region. By using an updated geological model, we focus this work on the comparison of the effect of hydraulic recharge linked to the infiltration of meteoric water in the period preceding the earthquake and the effect of the exploitation of a large limestone quarry in the vicinity of the epicenter.</p><p>At first, we carry out a complete inventory of local seismicity in a rectangular area of ​​50 km x 25 km around the Teil quarry. We put these seismic events in temporal relation with the rainfall measurements from the weather station at Montélimar. The three most intense rainy events between 2010 and 2019 are all followed by a seismic event in this restricted area, which occurs between 8 and 18 days after these rainy episodes.</p><p>Afterward, we describe the different geological configurations from the updated geological model and the boundary conditions, that are used to calculate the pressure variations along the Rouvière fault using two-dimensional (2D) double porosity double permeability models. The BRGM Compass code is used with the surface soil moisture data acquired by the SMOS satellite between 2010 and 2019, as surface boundary conditions and the Rhône river as edge boundary conditions. The main result of these hydrogeological simulations is that at the intersection of the Rouvière fault and a sub-vertical fault, the calculated increase in pore fluid pressure is maximum just before the earthquake of November 11, 2019.</p><p>A sensitivity study carried out on the hydraulic parameters and on the configuration of the fault system of the 2D model, allows us to estimate that at about 1000 m depth, the overpressure linked to the hydraulic recharge is between 0.3 and 0.6 MPa. Finally, we compare the variation in normal stress linked to a mechanical discharge from the surface quarry and the hydraulic overpressure linked to a meteoric water recharge, by choosing the same fault geometry. The comparison shows that the overpressure associated with hydraulic recharge has an impact that is an order of magnitude greater than that of the normal mechanical stress due to the decharge of the limestone quarry.</p>


Crystals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 385 ◽  
Author(s):  
Ruitao Li ◽  
Zhiyong Wang ◽  
Zhong Li ◽  
Khiam Khor ◽  
Zhili Dong

The potential applications of quasicrystals (QCs) in automotive and aerospace industries requires the investigation of their fracture and failure mechanisms under dynamic loading conditions. In this study, Al–Cr–Fe powders were consolidated into pellets using spark plasma sintering at 800 °C for 30 min. The microhardness and dynamic failure properties of the samples were determined using nanoindentation and split-Hopkinson pressure bar technique, respectively. Scanning electron microscopy and transmission electron microscopy were employed to analyze fracture particles. The dynamic failure strength obtained from the tests is 653 ± 40 MPa. The dynamic failure process is dominated by transgranular fracture mechanisms. The difficulty in the metadislocation motion in the dynamic loading leads to the high brittleness of the spark plasma sintered (SPSed) Al–Cr–Fe materials.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2313 ◽  
Author(s):  
Zheng-yi Wang ◽  
Lin-ming Dou ◽  
Gui-feng Wang

Roadway rockbursts seriously restrict the safety production of coal mines; however, the interaction between dynamic loads and roadway surrounding rocks has not been fully considered in existing studies. A dynamic failure analysis model of anchoring supporting structures was established to analyze dynamic effects of stress waves. Taking a rockburst in LW402103 of the Hujiahe coal mine as the case, the theoretical model was well applied and verified. The static cumulative resistance Qs (210.5 kN) which was incurred by deformation of rocks provided the basis (81.93% in the overall real-time resistance Q) of dynamic failures. However, the additional impact resistance Qd (46.43 kN) brought about by the energy release in the failure process of elastic zones triggered impact failures. As a result, under conditions that the overall real-time resistance Q (256.93 kN) exceeded the ultimate resistance [Q] (250.8 kN), the dynamic failure of supports occurred. The in situ application was implemented by taking pressure-relief measures and parameter optimizations of roadway supports, which achieved an effective prevention of rockbursts.


2009 ◽  
Vol 409 ◽  
pp. 338-341 ◽  
Author(s):  
Maria Berkes Maros ◽  
Nikoletta Kaulics Helmeczi ◽  
Péter Arató ◽  
Csaba Balázsi

A comprehensive experimental and theoretical work aiming at studying the dynamic failure process of silicon nitride ceramics has been recently started. The main goal of this research programme consists in characterizing the mechanical behaviour of the material under dynamic loading as well as investigating the dynamic failure process using micro- and macro-fractography. The current paper deals with the phenomenon of special rate dependence of KId dynamic fracture toughness of Si3N4 based ceramics. The KId values have been determined during instrumented impact test on the one hand based on the dynamic key curve method using notched specimens, on the other hand based on fractographic analyses of fracture surface of impacted unnotched samples.


Sign in / Sign up

Export Citation Format

Share Document