Hydraulic and mechanical constraints on the magnitude Ml 5.2 earthquake of 11 November 2019 at Le Teil (France)

Author(s):  
André Burnol ◽  
Antoine Armandine Les Landes ◽  
Hideo Aochi ◽  
Julie Maury ◽  
Cécile Allanic

<p>On 11 November 2019,  a Ml 5.2 earthquake broke the Rouvière fault in southeast France at Le Teil, close to the Rhone river. This recent seismic event is the strongest earthquake ever felt in France since the Arette (Pyrenees) earthquake in 1967. <em>A priori, </em>it is also a historically unprecedented earthquake in the surrounding low strain and stable continental region. By using an updated geological model, we focus this work on the comparison of the effect of hydraulic recharge linked to the infiltration of meteoric water in the period preceding the earthquake and the effect of the exploitation of a large limestone quarry in the vicinity of the epicenter.</p><p>At first, we carry out a complete inventory of local seismicity in a rectangular area of ​​50 km x 25 km around the Teil quarry. We put these seismic events in temporal relation with the rainfall measurements from the weather station at Montélimar. The three most intense rainy events between 2010 and 2019 are all followed by a seismic event in this restricted area, which occurs between 8 and 18 days after these rainy episodes.</p><p>Afterward, we describe the different geological configurations from the updated geological model and the boundary conditions, that are used to calculate the pressure variations along the Rouvière fault using two-dimensional (2D) double porosity double permeability models. The BRGM Compass code is used with the surface soil moisture data acquired by the SMOS satellite between 2010 and 2019, as surface boundary conditions and the Rhône river as edge boundary conditions. The main result of these hydrogeological simulations is that at the intersection of the Rouvière fault and a sub-vertical fault, the calculated increase in pore fluid pressure is maximum just before the earthquake of November 11, 2019.</p><p>A sensitivity study carried out on the hydraulic parameters and on the configuration of the fault system of the 2D model, allows us to estimate that at about 1000 m depth, the overpressure linked to the hydraulic recharge is between 0.3 and 0.6 MPa. Finally, we compare the variation in normal stress linked to a mechanical discharge from the surface quarry and the hydraulic overpressure linked to a meteoric water recharge, by choosing the same fault geometry. The comparison shows that the overpressure associated with hydraulic recharge has an impact that is an order of magnitude greater than that of the normal mechanical stress due to the decharge of the limestone quarry.</p>

2020 ◽  
Author(s):  
MODI ZHU ◽  
Jingfeng Wang ◽  
Husayn Sharif ◽  
Valeriy Ivanov ◽  
Aleksey Sheshukov

2020 ◽  
Vol 9 (4) ◽  
pp. 362-374
Author(s):  
J. C. Umavathi ◽  
Ali J. Chamkha

Nanotechnology has infiltrated into duct design in parallel with many other fields of mechanical, medical and energy engineering. Motivated by the excellent potential of nanofluids, a subset of materials engineered at the nanoscale, in the present work, a new mathematical model is developed for natural convection in a vertical duct containing nanofluid. Numerical scrutiny for the double-diffusive free and forced convection within a duct encumbered with nanofluid is performed. Buongiorno’s model is deployed to define the nanofluid. Robin boundary conditions are used to define the surface boundary conditions. Thermal and concentration equations envisage the viscous, Brownian motion, thermosphores of the nanofluid, Soret and Dufour effects. Using the Boussi-nesq approximation the solutal buoyancy effect as a result of gradients in concentration are incorporated. The conservation equations which are nonlinear are numerically estimated using fourth order Runge-Kutta methodology and analytically ratifying regular perturbation scheme. The mass, heat, nanoparticle concentration and species concentration fields on eight dimensionless physical parameters such as thermal and mass Grashof numbers, Brownian motion parameter, thermal parameter, Prandtl number, Eckert number, Schmidt parameter, and Soret parameter are calculated. The impact of these parameters are outlined pictorially. The velocity and temperature fields are boosted with the thermal Grashof number. The Soret and the Schemidt parameters reduces the nanoparticle volume fraction but it heightens the momentum, temperature and concentration. At the cold wall thermal and concentration Grashof numbers reduces the Nusselt values but they increase the Nusselt values at the hot wall. The reversal consequence was attained at the hot plate. The perturbation and Runge-Kutta solutions are equal in the nonappearance of Prandtl number. The (E. Zanchini, Int. J. Heat Mass Transfer 41, 3949 (1998)). results are restored for the regular fluid. The heat transfer rate is high for nanofluid when matched with regular fluid.


Ocean Science ◽  
2017 ◽  
Vol 13 (2) ◽  
pp. 235-257 ◽  
Author(s):  
Reiner Onken

Abstract. The Regional Ocean Modeling System (ROMS) has been employed to explore the sensitivity of the forecast skill of mixed-layer properties to initial conditions, boundary conditions, and vertical mixing parameterisations. The initial and lateral boundary conditions were provided by the Mediterranean Forecasting System (MFS) or by the MERCATOR global ocean circulation model via one-way nesting; the initial conditions were additionally updated through the assimilation of observations. Nowcasts and forecasts from the weather forecast models COSMO-ME and COSMO-IT, partly melded with observations, served as surface boundary conditions. The vertical mixing was parameterised by the GLS (generic length scale) scheme Umlauf and Burchard (2003) in four different set-ups. All ROMS forecasts were validated against the observations which were taken during the REP14-MED survey to the west of Sardinia. Nesting ROMS in MERCATOR and updating the initial conditions through data assimilation provided the best agreement of the predicted mixed-layer properties with the time series from a moored thermistor chain. Further improvement was obtained by the usage of COSMO-ME atmospheric forcing, which was melded with real observations, and by the application of the k-ω vertical mixing scheme with increased vertical eddy diffusivity. The predicted temporal variability of the mixed-layer temperature was reasonably well correlated with the observed variability, while the modelled variability of the mixed-layer depth exhibited only agreement with the observations near the diurnal frequency peak. For the forecasted horizontal variability, reasonable agreement was found with observations from a ScanFish section, but only for the mesoscale wave number band; the observed sub-mesoscale variability was not reproduced by ROMS.


2020 ◽  
Author(s):  
Jef Deckers ◽  
Bernd Rombaut ◽  
Koen Van Noten ◽  
Kris Vanneste

Abstract. After their first development in the middle Mesozoic, the overall NW-SE striking border fault systems of the Roer Valley Graben were reactivated as reverse faults under Late Cretaceous compression (inversion) and reactivated again as normal faults under Cenozoic extension. In Flanders (northern Belgium), a new geological model was created for the western border fault system of the Roer Valley Graben. After carefully evaluating the new geological model, this study shows the presence of two structural domains in this fault system with distinctly different strain distributions during both Late Cretaceous compression and Cenozoic extension. A southern domain is characterized by narrow ( 10 km) distributed faulting. The total normal and reverse throw in the two domains was estimated to be similar during both tectonic phases. The repeated similarities in strain distribution during both compression and extension stresses the importance of inherited structural domains on the inversion/rifting kinematics besides more obvious factors such as stress directions. The faults in both domains strike NW-SE, but the change in geometry between them takes place across the oblique WNW-ESE striking Grote Brogel fault. Also in other parts of the Roer Valley Graben, WNW-ESE striking faults are associated with major geometrical changes (left-stepping patterns) in its border fault system. This study thereby demonstrates the presence of different long-lived structural domains in the Roer Valley Graben, each having their particular strain distributions that are related to the presence of non-colinear faults.


Author(s):  
Andrea Ferrantelli ◽  
Jevgeni Fadejev ◽  
Jarek Kurnitski

As the energy efficiency demands for future buildings become increasingly stringent, preliminary assessments of energy consumption are mandatory. These are possible only through numerical simulations, whose reliability crucially depends on boundary conditions. We therefore investigate their role in numerical estimates for the usage of geothermal energy, performing annual simulations of transient heat transfer for a building employing a geothermal heat pump plant and energy piles. Starting from actual measurements, we solve the heat equations in 2D and 3D using COMSOL Multiphysics and IDA-ICE, and discover a negligible impact of the multiregional ground surface boundary conditions. Moreover, we verify that the thermal mass of the soil medium induces a small vertical temperature gradient on the piles surface. We also find a roughly constant temperature on each horizontal cross-section, with nearly identical values if the average temperature is integrated over the full plane or evaluated at one single point. Calculating the yearly heating need for an entire building we then show that the chosen upper boundary condition affects the energy balance dramatically. Using directly the pipes’ outlet temperature induces a 54% overestimation of the heat flux, while the exact ground surface temperature above the piles reduces the error to 0.03%.


2006 ◽  
Vol 3 (5) ◽  
pp. 1481-1514 ◽  
Author(s):  
E. Özsoy ◽  
A. Sözer

Abstract. The Cilician Basin/Shelf Model is adapted for studying the shelf circulation in the Cilician Basin – Gulf of İskenderun region of the Levantine Basin of the Eastern Mediterranean between the Turkish Mediterranean coast, Syria and the island of Cyprus. The model initial conditions and open boundary conditions are supplied by the ALERMO regional model of the Levantine Sea, while interactive surface flux boundary conditions are specified by an atmospheric boundary layer sub-model using calculated water properties and surface atmospheric variables supplied by the Skiron atmospheric model, within the nested modelling approach of the MFSTEP (Mediterranean Forecasting System: Towards Environmental Predictions) project. Sensitivity tests are performed for alternative surface boundary conditions. Model performance for shelf/meso-scale forecasts is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document