Erratum to “A three-dimensional vetex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate”

2004 ◽  
Vol 228 (1) ◽  
pp. 147 ◽  
Author(s):  
Hisao Honda ◽  
Masaharu Tanemura ◽  
Tatsuzo Nagai
2021 ◽  
Author(s):  
Seunggyu Jeon ◽  
Se-Hwan Lee ◽  
Saeed B. Ahmed ◽  
Jonghyeuk Han ◽  
Su-Jin Heo ◽  
...  

Abstract Various cell aggregate culture technologies have been developed and actively applied to tissue engineering and organ-on-a-chip. However, the conventional culture technologies are labor-intensive, and their outcomes are highly user dependent. In addition, the technologies cannot be used to produce three-dimensional (3D) complex tissues. In this regard, 3D cell aggregate printing technology has attracted increased attention from many researchers owing to its 3D processability. The technology allows the fabrication of 3D freeform constructs using multiple types of cell aggregates in an automated manner. Technological advancement has resulted in the development of a printing technology with a high resolution of approximately 20 μm in 3D space. A high-speed printing technology that can print a cell aggregate in milliseconds has also been introduced. The developed aggregate printing technologies are being actively applied to produce various types of engineered tissues. Although various types of high-performance printing technologies have been developed, there are still some technical obstacles in the fabrication of engineered tissues that mimic the structure and function of native tissues. This review highlights the central importance and current technical level of 3D cell aggregate printing technology, and their applications to tissue/disease models, artificial tissues, and drug-screening platforms. The paper also discusses the remaining hurdles and future directions of the printing processes.


2020 ◽  
Vol 477 (20) ◽  
pp. 4071-4084
Author(s):  
Toshihiro Sera ◽  
Shiro Higa ◽  
Yan Zeshu ◽  
Kyosuke Takahi ◽  
Satoshi Miyamoto ◽  
...  

Hydrolysis of the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) at the cell membrane induces the release of inositol 1,4,5-trisphosphate (IP3) into the cytoplasm and diffusion of diacylglycerol (DAG) through the membrane, respectively. Release of IP3 subsequently increases Ca2+ levels in the cytoplasm, which results in activation of protein kinase C α (PKCα) by Ca2+ and DAG, and finally the translocation of PKCα from the cytoplasm to the membrane. In this study, we developed a metabolic reaction–diffusion framework to simulate PKCα translocation via PIP2 hydrolysis in an endothelial cell. A three-dimensional cell model, divided into membrane and cytoplasm domains, was reconstructed from confocal microscopy images. The associated metabolic reactions were divided into their corresponding domain; PIP2 hydrolysis at the membrane domain resulted in DAG diffusion at the membrane domain and IP3 release into the cytoplasm domain. In the cytoplasm domain, Ca2+ was released from the endoplasmic reticulum, and IP3, Ca2+, and PKCα diffused through the cytoplasm. PKCα bound Ca2+ at, and diffused through, the cytoplasm, and was finally activated by binding with DAG at the membrane. Using our model, we analyzed IP3 and DAG dynamics, Ca2+ waves, and PKCα translocation in response to a microscopic stimulus. We found a qualitative agreement between our simulation results and our experimental results obtained by live-cell imaging. Interestingly, our results suggest that PKCα translocation is dominated by DAG dynamics. This three-dimensional reaction–diffusion mathematical framework could be used to investigate the link between PKCα activation in a cell and cell function.


Author(s):  
Kevin de Vries ◽  
Anna Nikishova ◽  
Benjamin Czaja ◽  
Gábor Závodszky ◽  
Alfons G. Hoekstra

2012 ◽  
Vol 51 (05) ◽  
pp. 179-185 ◽  
Author(s):  
M. Wendisch ◽  
D. Aurich ◽  
R. Runge ◽  
R. Freudenberg ◽  
J. Kotzerke ◽  
...  

SummaryTechnetium radiopharmaceuticals are well established in nuclear medicine. Besides its well-known gamma radiation, 99mTc emits an average of five Auger and internal conversion electrons per decay. The biological toxicity of these low-energy, high-LET (linear energy transfer) emissions is a controversial subject. One aim of this study was to estimate in a cell model how much 99mTc can be present in exposed cells and which radiobiological effects could be estimated in 99mTc-overloaded cells. Methods: Sodium iodine symporter (NIS)- positive thyroid cells were used. 99mTc-uptake studies were performed after preincubation with a non-radioactive (cold) stannous pyro - phosphate kit solution or as a standard 99mTc pyrophosphate kit preparation or with pure pertechnetate solution. Survival curves were analyzed from colony-forming assays. Results: Preincubation with stannous complexes causes irreversible intracellular radioactivity retention of 99mTc and is followed by further pertechnetate influx to an unexpectedly high 99mTc level. The uptake of 99mTc pertechnetate in NIS-positive cells can be modified using stannous pyrophosphate from 3–5% to >80%. The maximum possible cellular uptake of 99mTc was 90 Bq/cell. Compared with nearly pure extracellular irradiation from routine 99mTc complexes, cell survival was reduced by 3–4 orders of magnitude after preincubation with stannous pyrophosphate. Conclusions: Intra cellular 99mTc retention is related to reduced survival, which is most likely mediated by the emission of low-energy electrons. Our findings show that the described experiments constitute a simple and useful in vitro model for radiobiological investigations in a cell model.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xu Gao ◽  
Jingya Dai ◽  
Guifang Li ◽  
Xinya Dai

Abstract Objective In this work, we investigated the effects of gambogic acid (GA) on lipopolysaccharide (LPS)-induced apoptosis and inflammation in a cell model of neonatal pneumonia. Method Human WI-38 cells were maintained in vitro and incubated with various concentrations of GA to examine WI-38 survival. GA-preincubated WI-38 cells were then treated with LPS to investigate the protective effects of GA on LPS-induced death, apoptosis and inflammation. Western blot assay was utilized to analyze the effect of GA on tropomyosin receptor kinase A (TrkA) signaling pathway in LPS-treated WI-38 cells. In addition, human AKT serine/threonine kinase 1 (Akt) gene was knocked down in WI-38 cells to further investigate the associated genetic mechanisms of GA in protecting LPS-induced inflammation and apoptosis. Results Pre-incubating WI-38 cells with low and medium concentrations GA protected LPS-induced cell death, apoptosis and inflammatory protein productions of IL-6 and MCP-1. Using western blot assay, it was demonstrated that GA promoted TrkA phosphorylation and Akt activation in LPS-treated WI-38 cells. Knocking down Akt gene in WI-38 cells showed that GA-associated protections against LPS-induced apoptosis and inflammation were significantly reduced. Conclusions GA protected LPS-induced apoptosis and inflammation, possibly through the activations of TrkA and Akt signaling pathway. This work may broaden our understanding on the molecular mechanisms of human neonatal pneumonia.


2021 ◽  
Vol 11 (15) ◽  
pp. 7060
Author(s):  
Antonia Mancuso ◽  
Maria Chiara Cristiano ◽  
Massimo Fresta ◽  
Daniele Torella ◽  
Donatella Paolino

Ethosomes® are one of the main deformable vesicles proposed to overcome the stratum corneum. They are composed of lecithin, ethanol and water, resulting in round vesicles characterized by a narrow size distribution and a negative surface charge. Taking into account their efficiency to deliver drugs into deeper skin layers, the current study was designed to evaluate the influence of different lipids on the physico-chemical features of traditional ethosomes in the attempt to influence their fate. Three lipids (DOPE, DSPE and DOTAP) were used for the study, but only DOTAP conferred a net positive charge to ethosomes, maintaining a narrow mean size lower than 300 nm and a good polydispersity index. Stability and in vitro cytotoxic studies have been performed using Turbiscan Lab analysis and MTT dye exclusion assay, respectively. Data recorded demonstrated the good stability of modified ethosomes and a reasonable absence of cell mortality when applied to human keratinocytes, NCTC 2544, which are used as a cell model. Finally, the best formulations were selected to evaluate their ability to encapsulate drugs, through the use of model compounds. Cationic ethosomes encapsulated oil red o and rhodamine b in amounts comparable to those recorded from conventional ethosomes (over 50%). Results recorded from this study are encouraging as cationic ethosomes may open new opportunities for skin delivery.


Sign in / Sign up

Export Citation Format

Share Document