scholarly journals Cross-inhibition of Turing patterns explains the self-organized regulatory mechanism of planarian fission

2020 ◽  
Vol 485 ◽  
pp. 110042 ◽  
Author(s):  
Samantha Herath ◽  
Daniel Lobo
2019 ◽  
Vol 42 ◽  
Author(s):  
Lucio Tonello ◽  
Luca Giacobbi ◽  
Alberto Pettenon ◽  
Alessandro Scuotto ◽  
Massimo Cocchi ◽  
...  

AbstractAutism spectrum disorder (ASD) subjects can present temporary behaviors of acute agitation and aggressiveness, named problem behaviors. They have been shown to be consistent with the self-organized criticality (SOC), a model wherein occasionally occurring “catastrophic events” are necessary in order to maintain a self-organized “critical equilibrium.” The SOC can represent the psychopathology network structures and additionally suggests that they can be considered as self-organized systems.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 173
Author(s):  
Marina Kurbasic ◽  
Ana M. Garcia ◽  
Simone Viada ◽  
Silvia Marchesan

Bioactive hydrogels based on the self-assembly of tripeptides have attracted great interest in recent years. In particular, the search is active for sequences that are able to mimic enzymes when they are self-organized in a nanostructured hydrogel, so as to provide a smart catalytic (bio)material whose activity can be switched on/off with assembly/disassembly. Within the diverse enzymes that have been targeted for mimicry, hydrolases find wide application in biomaterials, ranging from their use to convert prodrugs into active compounds to their ability to work in reverse and catalyze a plethora of reactions. We recently reported the minimalistic l-His–d-Phe–d-Phe for its ability to self-organize into thermoreversible and biocatalytic hydrogels for esterase mimicry. In this work, we analyze the effects of terminus modifications that mimic the inclusion of the tripeptide in a longer sequence. Therefore, three analogues, i.e., N-acetylated, C-amidated, or both, were synthesized, purified, characterized by several techniques, and probed for self-assembly, hydrogelation, and esterase-like biocatalysis. This work provides useful insights into how chemical modifications at the termini affect self-assembly into biocatalytic hydrogels, and these data may become useful for the future design of supramolecular catalysts for enhanced performance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Stephan Appelfeller

AbstractThe self-organized formation of single domain Au silicide nanowires is observed on Si(110). These nanowires are analysed using scanning tunnelling microscopy (STM) and spectroscopy (STS) as well as photoemission spectroscopy (PES). Core-level PES is utilised to confirm the formation of Au silicide and establish its presence as the top most surface structure, i.e., the nanowires. The growth of the Au silicide nanowires and their dimensions are studied by STM. They form for Au coverages of about 1 monolayer and are characterized by widths of about 2 to 3 nm and heights below 1 nm while reaching lengths exceeding 500 nm when choosing appropriate annealing temperatures. Valence band PES and STS indicate a small but finite density of states at the Fermi level typical for compound metals.


2021 ◽  
Vol 11 (14) ◽  
pp. 6575
Author(s):  
Yu Yang ◽  
Adrian Keller

Ion beam irradiation of solid surfaces may result in the self-organized formation of well-defined topographic nanopatterns. Depending on the irradiation conditions and the material properties, isotropic or anisotropic patterns of differently shaped features may be obtained. Most intriguingly, the periodicities of these patterns can be adjusted in the range between less than twenty and several hundred nanometers, which covers the dimensions of many cellular and extracellular features. However, even though ion beam nanopatterning has been studied for several decades and is nowadays widely employed in the fabrication of functional surfaces, it has found its way into the biomaterials field only recently. This review provides a brief overview of the basics of ion beam nanopatterning, emphasizes aspects of particular relevance for biomaterials applications, and summarizes a number of recent studies that investigated the effects of such nanopatterned surfaces on the adsorption of biomolecules and the response of adhering cells. Finally, promising future directions and potential translational challenges are identified.


1997 ◽  
Vol 56 (6) ◽  
pp. 6710-6718 ◽  
Author(s):  
Hans-Henrik Stølum

2000 ◽  
Vol 638 ◽  
Author(s):  
Alan D.F. Dunbar ◽  
Matthew P. Halsall ◽  
Uschi Bangert ◽  
Alan Harvey ◽  
Philip Dawson ◽  
...  

AbstractWe report optical and scanning transmission electron microscopy studies of germanium dots grown on silicon. In an attempt to control the self-organized growth process and promote dot size uniformity the dot layers were grown on a 4.5nm Si0.6Ge0.4 alloy template layer. Photoluminescence results indicate the formation of carrier confining Ge rich islands, whilst Raman scattering results indicate the presence of an alloy throughout the structures formed. The samples were studied in the UK high resolution scanning transmission electron microscopy facility at Liverpool, UK. Energy dispersive analysis of individual line scans through the sample show that the structures are composed of an alloy throughout with an asymmetric distribution of Germanium in the dots and in the wetting layer close to the dots. We discuss the results in the light of the proposed growth mode for these dots and conclude that attempts to manipulate the composition of these dots during growth may be problematic due to the self-organized nature of their formation.


1999 ◽  
Vol 571 ◽  
Author(s):  
H. Kohno ◽  
S. Takeda ◽  
T. Iwasaki

ABSTRACTWe have grown chains of crystalline-Si nanospheres: the crystalline-Si nanospheres of about 10 nm in diameter are supported in amorphous silica and carbon at a nearly equal spacing by a self-organized process. The self-organized phenomenon was attributed to the periodic instability of catalyst on the top of growing wire and oxidization during the growth of nanowires.


2002 ◽  
Vol 496 (1-2) ◽  
pp. L18-L22 ◽  
Author(s):  
Bernhard Kaiser ◽  
Bert Stegemann ◽  
Hanna Kaukel ◽  
Klaus Rademann

Sign in / Sign up

Export Citation Format

Share Document