scholarly journals P60.02 Insight Into Intestinal Microbiome in NSCLC Patients: More Personalized Immunotherapy in the Crosshairs

2021 ◽  
Vol 16 (3) ◽  
pp. S541
Author(s):  
A. Grenda ◽  
E. Iwan ◽  
P. Krawczyk ◽  
M. Słomiany-Szwarc ◽  
A. Bomba ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Lihui Chen ◽  
Jie Li ◽  
Wu Zhu ◽  
Yehong Kuang ◽  
Tao Liu ◽  
...  

Psoriasis affects the health of myriad populations around the world. The pathogenesis is multifactorial, and the exact driving factor remains unclear. This condition arises from the interaction between hyperproliferative keratinocytes and infiltrating immune cells, with poor prognosis and high recurrence. Better clinical treatments remain to be explored. There is much evidence that alterations in the skin and intestinal microbiome play an important role in the pathogenesis of psoriasis, and restoration of the microbiome is a promising preventive and therapeutic strategy for psoriasis. Herein, we have reviewed recent studies on the psoriasis-related microbiome in an attempt to confidently identify the “core” microbiome of psoriasis patients, understand the role of microbiome in the pathogenesis of psoriasis, and explore new therapeutic strategies for psoriasis through microbial intervention.


mSphere ◽  
2017 ◽  
Vol 2 (1) ◽  
Author(s):  
Jocelyn M. Choo ◽  
Tokuwa Kanno ◽  
Nur Masirah Mohd Zain ◽  
Lex E. X. Leong ◽  
Guy C. J. Abell ◽  
...  

ABSTRACT Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly understood. Much research in this area has focused on changes in microbiota composition, despite the interdependency and overlapping functions of many members of the microbial community. These relationships make prediction of the functional impact of microbiota-level changes difficult, while analyses based on the metabolome alone provide relatively little insight into the taxon-level changes that underpin changes in metabolite levels. Here, we used combined microbiota and metabolome profiling to characterize changes associated with clinically important antibiotic combinations with distinct effects on the gut. Correlation analysis of changes in the metabolome and microbiota indicate that a combined approach will be essential for a mechanistic understanding of the functional impact of distinct antibiotic classes. The intestinal microbiome plays an essential role in regulating many aspects of host physiology, and its disruption through antibiotic exposure has been implicated in the development of a range of serious pathologies. The complex metabolic relationships that exist between members of the intestinal microbiota and the potential redundancy in functional pathways mean that an integrative analysis of changes in both structure and function are needed to understand the impact of antibiotic exposure. We used a combination of next-generation sequencing and nuclear magnetic resonance (NMR) metabolomics to characterize the effects of two clinically important antibiotic treatments, ciprofloxacin and vancomycin-imipenem, on the intestinal microbiomes of female C57BL/6 mice. This assessment was performed longitudinally and encompassed both antibiotic challenge and subsequent microbiome reestablishment. Both antibiotic treatments significantly altered the microbiota and metabolite compositions of fecal pellets during challenge and recovery. Spearman’s correlation analysis of microbiota and NMR data revealed that, while some metabolites could be correlated with individual operational taxonomic units (OTUs), frequently multiple OTUs were associated with a significant change in a given metabolite. Furthermore, one metabolite, arginine, can be associated with increases/decreases in different sets of OTUs under differing conditions. Taken together, these findings indicate that reliance on shifts in one data set alone will generate an incomplete picture of the functional effect of antibiotic intervention. A full mechanistic understanding will require knowledge of the baseline microbiota composition, combined with both a comparison and an integration of microbiota, metabolomics, and phenotypic data. IMPORTANCE Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly understood. Much research in this area has focused on changes in microbiota composition, despite the interdependency and overlapping functions of many members of the microbial community. These relationships make prediction of the functional impact of microbiota-level changes difficult, while analyses based on the metabolome alone provide relatively little insight into the taxon-level changes that underpin changes in metabolite levels. Here, we used combined microbiota and metabolome profiling to characterize changes associated with clinically important antibiotic combinations with distinct effects on the gut. Correlation analysis of changes in the metabolome and microbiota indicate that a combined approach will be essential for a mechanistic understanding of the functional impact of distinct antibiotic classes.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuhang Wang ◽  
Pei Yuan ◽  
Beibei Mao ◽  
Ning Li ◽  
Jianming Ying ◽  
...  

AbstractSeveral clinical trials have shown the safety and effectiveness of PD-1/PD-L1 inhibitors in neoadjuvant therapy in resectable non-small cell lung cancer (NSCLC). However, 18–83% patients can benefit from it. In this study, we aimed to assess the association of PD-L1 expression, tumor mutation burden, copy number alteration (CNA, including copy number gain and loss) burden with the pathologic response to neoadjuvant PD-1 blockade and investigate the changes in the tumor immune microenvironment (TIME) during neoadjuvant immunotherapy in NSCLC. Pre-immunotherapy treatment tumor samples from twenty-nine NSCLC patients who received neoadjuvant immunotherapy with sintilimab, an anti-PD-1 drug, were subjected to targeted DNA sequencing and PD-L1 immunochemistry staining. The pathological response was positively correlated with tumor proportion score (TPS) of PD-L1 and negatively correlated with copy number gain (CNgain) burden. Of note, the combination of CNgain burden and TPS can better stratify major pathological response (MPR) patients than did CNgain or TPS alone. Whereas, TMB showed a limited correlation with pathological regression. Additionally, PD-1 blockade led to an increase in CD8+PD-1−T cells which was clinically relevant to MPR as evaluated by multiplex immunofluorescence. A significant reduction in CD19+ cells was observed in the Non-MPR group but not in the MPR group, indicating the involvement of B cells in improving neoadjuvant immunotherapy response in NSCLC. Together, our study provides new data for the correlation of PD-L1 expression and genomic factors with drug response in neoadjuvant immunotherapy settings in NSCLC. The changes of TIME may provide novel insight into the immune responses to neoadjuvant anti-PD-1 therapy.


Proteomes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Johanna Tröscher-Mußotter ◽  
Bruno Tilocca ◽  
Volker Stefanski ◽  
Jana Seifert

Pigs are among the most important farm animals worldwide and research to optimize their feed efficiency and improve their welfare is still in progress. The porcine intestinal microbiome is so far mainly known from sequencing-based studies. Digesta and mucosa samples from five different porcine gastrointestinal tract sections were analyzed by metaproteomics to obtain a deeper insight into the functions of bacterial groups with concomitant analyses of host proteins. Firmicutes (Prevotellaceae) dominated mucosa and digesta samples, followed by Bacteroidetes. Actinobacteria and Proteobacteria were much higher in abundance in mucosa compared to digesta samples. Functional profiling reveals the presence of core functions shared between digesta and mucosa samples. Protein abundances of energy production and conversion were higher in mucosa samples, whereas in digesta samples more proteins were involved in lipid transport and metabolism; short-chain fatty acids production were detected. Differences were also highlighted between sections, with the small intestine appearing more involved in carbohydrate transport and metabolism than the large intestine. Thus, this study produced the first functional analyses of the porcine GIT biology, discussing the findings in relation to expected bacterial and host functions.


2021 ◽  
Vol 8 ◽  
Author(s):  
Haifeng Lu ◽  
Liang Chen ◽  
Xiaxia Pan ◽  
Yujun Yao ◽  
Hua Zhang ◽  
...  

Background: Cirrhosis is a common chronic liver disease characterized by irreversible diffuse liver damage. Intestinal microbiome dysbiosis and metabolite dysfunction contribute to the development of cirrhosis. Lactitol (4-β-D-galactopyranosyl-D-glucitol) was previously reported to promote the growth of intestinal Bifidobacteria. However, the effect of lactitol on the intestinal microbiome and fecal short-chain fatty acids (SCFAs) and bile acids (BAs) and the interactions among these factors in cirrhotic patients pre- and post-lactitol treatment remain poorly understood.Methods: Here, using shotgun metagenomics and targeted metabolomics methods.Results: we found that health-promoting lactic acid bacteria, including Bifidobacterium longum, B.pseudocatenulatum, and Lactobacillus salivarius, were increased after lactitol intervention, and significant decrease of pathogen Klebsiella pneumonia and associated antibiotic resistant genes /virulence factors. Functionally, pathways including Pseudomonas aeruginosa biofilm formation, endotoxin biosynthesis, and horizontal transfer of pathogenic genes were decreased in cirrhotic patients after 4-week lactitol intervention compared with before treatment.Conclusion: We identified lactitol-associated metagenomic changes, and provide insight into the understanding of the roles of lactitol in modulating gut microbiome in cirrhotic patients.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Deborah A. van den Brink ◽  
Tim de Meij ◽  
Daniella Brals ◽  
Robert H. J. Bandsma ◽  
Johnstone Thitiri ◽  
...  

Abstract Children with severe acute malnutrition (SAM) display immature, altered gut microbiota and have a high mortality risk. Faecal volatile organic compounds (VOCs) reflect the microbiota composition and may provide insight into metabolic dysfunction that occurs in SAM. Here we determine whether analysis of faecal VOCs could identify children with SAM with increased risk of mortality. VOC profiles from children who died within six days following admission were compared to those who were discharged alive using machine learning algorithms. VOC profiles of children who died could be separated from those who were discharged with fair accuracy (AUC) = 0.71; 95% CI 0.59–0.87; P = 0.004). We present the first study showing differences in faecal VOC profiles between children with SAM who survived and those who died. VOC analysis holds potential to help discover metabolic pathways within the intestinal microbiome with causal association with mortality and target treatments in children with SAM. Trial Registration: The F75 study is registered at clinicaltrials.gov/ct2/show/NCT02246296.


2021 ◽  
Vol 16 (3) ◽  
pp. S220-S221
Author(s):  
R. Laza Briviesca ◽  
E. Nadal ◽  
M. Casarrubios ◽  
A. Insa ◽  
B. Sierra-Rodero ◽  
...  

2008 ◽  
Vol 25 (2) ◽  
pp. 97-106 ◽  
Author(s):  
Mojca Stražišar ◽  
Tomaž Rott ◽  
Damjan Glavač

We evaluated the occurrence of mutations in P53, K-RAS, COX-2, expression of COX-2 and hTERT and relations among clinicopathological signs. P53 mutations were identified in 34.4% of tumours, the majority of them occurring in SCC (squamous cell carcinoma, 55.6%). K-RAS was mutated in 12.2% of NSCLC tumours, the majority of the mutations being found in ADC (adenocarcinoma, 27.0%). Mutational screening detected three different COX-2 mutations and five different P53 mutations, published for the first time. With RT-PCR we observed that the expression of the tested genes, hTERT and COX-2, was highly significant for ADC (p< 0.01) and SCC (p< 0.05). Statistical analysis of the combined results revealed significant correlation between expression of COX-2 and hTERT (p< 0.001), hTERT expression and staging (p< 0.05) and survival (p< 0.01). A positive correlation between COX-2 expression and K-RAS mutation (p<0.05) was also observed. This study provides insight into associations between the analysed biomarkers and the clinical-pathological data of the patients.


1966 ◽  
Vol 24 ◽  
pp. 322-330
Author(s):  
A. Beer

The investigations which I should like to summarize in this paper concern recent photo-electric luminosity determinations of O and B stars. Their final aim has been the derivation of new stellar distances, and some insight into certain patterns of galactic structure.


1984 ◽  
Vol 75 ◽  
pp. 461-469 ◽  
Author(s):  
Robert W. Hart

ABSTRACTThis paper models maximum entropy configurations of idealized gravitational ring systems. Such configurations are of interest because systems generally evolve toward an ultimate state of maximum randomness. For simplicity, attention is confined to ultimate states for which interparticle interactions are no longer of first order importance. The planets, in their orbits about the sun, are one example of such a ring system. The extent to which the present approximation yields insight into ring systems such as Saturn's is explored briefly.


Sign in / Sign up

Export Citation Format

Share Document