A promising electrodeposited iron oxide nanoparticles of very high saturation magnetization and superparamagnetic properties for remediation of polluted water with lead ions

2018 ◽  
Vol 93 ◽  
pp. 379-387 ◽  
Author(s):  
Mahmoud Elrouby ◽  
Nagwa Abo El‐Maali ◽  
Rehab Abd El-Rahman
2019 ◽  
Vol 290 ◽  
pp. 301-306
Author(s):  
Osama Abu Noqta ◽  
Azlan Abdul Aziz ◽  
Adamu Ibrahim Usman

Superparamagnetic iron oxide nanoparticles (SPION) were synthesized by one pot coprecipitation method at room temperature in the presence of Polyvinylpyrrolidone (PVP). X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and Vibrating Sample Magnetometer (VSM) were used to analysis the physicochemical properties of PVP-SPION. The XRD patterns confirmed that the structure of as-synthesized sample is magnetite with cubic structure system. In TEM results, the image of PVP-SPION displayed that the size of particles was 14.05 nm with narrower size distribution and also the PVP played important role to minimize the agglomeration of SPION. Finally, the high saturation magnetization value of PVP-SPION (53.0 emu/g) indicate the as-synthesized sample has a great potential as a contrast agent for MRI.


2016 ◽  
Vol 17 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Thanaa I. Shalaby ◽  
Marwa F. El-Kady ◽  
Abd El Halem M. Zaki ◽  
Soheir M. El-Kholy

Novel magnetic cellulose acetate (CA) nanofibers were fabricated using an electrospinning process. Co-precipitated magnetite iron oxide nanoparticles were immobilized onto CA nanofibers at different weight ratios (0.2–2.5% wt/v) with a CA concentration of 15% (wt %), applied electric voltage of 20 kV, feeding rate of 1.5 ml/h and 7 cm distance between needle tip and collector. The prepared iron oxide nanoparticles were characterized using X-ray diffraction, a transmission electron microscope, a Fourier transform infrared spectrophotometer (FT-IR) and a vibrating sample magnetometer (VSM). The magnetic nanofibers were characterized by scanning electron microscopy, FT-IR, thermogravimetric analysis and VSM. The fabricated composite nanofibers were evaluated as a sorbent matrix for lead decontamination from aqueous solution using a batch technique. The influence of solution pH, contact time and adsorbent concentration on the removal efficiency was investigated. Adsorption kinetics models and isotherms were applied to the lead decontamination process onto the fabricated composite nanofibers. The kinetics of the sorption process revealed that the pseudo-second-order model fitted relatively better than the pseudo-first-order model. On the other hand, both the Langmuir and Freundlich isotherms gave a comparable fit to the adsorption data, with a high coefficient of regression of 0.999.


2002 ◽  
Vol 38 (5) ◽  
pp. 2592-2594 ◽  
Author(s):  
S.I. Nikitenko ◽  
Y. Koltypin ◽  
V. Markovich ◽  
E. Rozenberg ◽  
G. Gorodetsky ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2876
Author(s):  
Mian Fawaz Ahmed ◽  
Muhammad Asad Abbas ◽  
Azhar Mahmood ◽  
Nasir M. Ahmad ◽  
Hifza Rasheed ◽  
...  

Water contaminated with highly hazardous metals including arsenic (As) is one of the major challenges faced by mankind in the present day. To address this pressing issue, hybrid beads were synthesized with various concentrations of zero valent iron oxide nanoparticles, i.e., 20% (FeCh-20), 40% (FeCh-40) and 60% (FeCh-60) impregnated into a polymer of chitosan. These hybrid beads were employed as an adsorbent under the optimized conditions of pH and time to facilitate the efficient removal of hazardous arsenic by adsorption cum reduction processes. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer- Emmett-Teller BET, a porosity test and wettability analysis were performed to characterize these hybrid beads. The porosity and contact angle of the prepared hybrid beads decreased with an increase in nanoparticle concentration. The effects of various adsorption factors such as adsorbent composition, contact period, pH value and the initial adsorbate concentration were also evaluated to study the performance of these beads for arsenic treatment in contaminated water. FeCh-20, FeCh-40 and FeCh-60 have demonstrated 63%, 81% and 70% removal of arsenic at optimized conditions of pH 7.4 in 10 h, respectively. Higher adsorption of arsenic by FeCh-40 is attributed to its optimal porosity, hydrophilicity and the presence of appropriate nanoparticle contents. The Langmuir adsorption kinetics described the pseudo second order. Thus, the novel beads of FeCh-40 developed in this work are a potent candidate for the treatment of polluted water contaminated with highly toxic arsenic metals.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Diana Kostyukova ◽  
Yong Hee Chung

Iron oxide nanoparticles were synthesized by precipitation in isobutanol with sodium hydroxide and ammonium hydroxide. The isobutanol played a role of a surfactant in the synthesis. The nanoparticles were calcined for 100 min to 5 hours in the range of 300 to 600°C. The characterization of the samples by FTIR (Fourier-transform infrared) and XRD (X-ray diffraction) confirmed the formation ofγ-Fe2O3(maghemite) from Fe3O4(magnetite) at calcination at 300°C. The morphology and particle size were studied by SEM (scanning electron microscope). Nanoparticles in the range of 11–22 nm prepared at 0.09 M of ferrous chloride exhibited superparamagnetic properties. Nanoparticles synthesized with ferrous chloride and ammonium hydroxide at 75°C and calcined at 530°C for 2 h wereα-Fe2O3(hematite).


2013 ◽  
Vol 829 ◽  
pp. 752-756 ◽  
Author(s):  
Razieh Asrarian ◽  
Reza Jadidian ◽  
Hooshang Parham ◽  
Sara Haghtalab

Aluminum is the most widely used non ferrous metal, but its considered as a highly toxic element in drinking water at high concentration and the trace aluminum content in food must be controlled. This paper shows effective removal of aluminum from water and industrial wastewater by magnetic nanoparticle. The method is fast, simple, cheap, effective and safe for treatment of aluminum polluted waters. Preparation of adsorbent is easy and removal time is short. magnetic iron oxide nanoparticles (MIONPs) can adsorb up to 99.8% of 60 ng ml-1of Al ions from polluted water. The required time for complete removal of aluminum ions was 3 minutes. Variation of pH and high electrolyte concentration (NaCl) of the solution do not have considerable effect on the aluminum removal efficiency.


2016 ◽  
Vol 4 (22) ◽  
pp. 3969-3981 ◽  
Author(s):  
Tina Lam ◽  
Pramod K. Avti ◽  
Philippe Pouliot ◽  
Jean-Claude Tardif ◽  
Éric Rhéaume ◽  
...  

Easily dispersed in water and fluorescent. Very high r2 and r2* relaxivities. Dye does not influence cell viability of the probe.


Sign in / Sign up

Export Citation Format

Share Document