Preparation and application of magnetite nanoparticles immobilized on cellulose acetate nanofibers for lead removal from polluted water

2016 ◽  
Vol 17 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Thanaa I. Shalaby ◽  
Marwa F. El-Kady ◽  
Abd El Halem M. Zaki ◽  
Soheir M. El-Kholy

Novel magnetic cellulose acetate (CA) nanofibers were fabricated using an electrospinning process. Co-precipitated magnetite iron oxide nanoparticles were immobilized onto CA nanofibers at different weight ratios (0.2–2.5% wt/v) with a CA concentration of 15% (wt %), applied electric voltage of 20 kV, feeding rate of 1.5 ml/h and 7 cm distance between needle tip and collector. The prepared iron oxide nanoparticles were characterized using X-ray diffraction, a transmission electron microscope, a Fourier transform infrared spectrophotometer (FT-IR) and a vibrating sample magnetometer (VSM). The magnetic nanofibers were characterized by scanning electron microscopy, FT-IR, thermogravimetric analysis and VSM. The fabricated composite nanofibers were evaluated as a sorbent matrix for lead decontamination from aqueous solution using a batch technique. The influence of solution pH, contact time and adsorbent concentration on the removal efficiency was investigated. Adsorption kinetics models and isotherms were applied to the lead decontamination process onto the fabricated composite nanofibers. The kinetics of the sorption process revealed that the pseudo-second-order model fitted relatively better than the pseudo-first-order model. On the other hand, both the Langmuir and Freundlich isotherms gave a comparable fit to the adsorption data, with a high coefficient of regression of 0.999.

2018 ◽  
Vol 198 ◽  
pp. 9-16 ◽  
Author(s):  
Ricardo J.R. Matos ◽  
Catarina I.P. Chaparro ◽  
Jorge C. Silva ◽  
Manuel Almeida Valente ◽  
João Paulo Borges ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 517 ◽  
Author(s):  
G. Papaparaskeva ◽  
M. M. Dinev ◽  
T. Krasia-Christoforou ◽  
R. Turcu ◽  
S. A. Porav ◽  
...  

The preparation procedure of zero magnetic remanence superparamagnetic white paper by means of three-layer membrane configuration (sandwiched structure) is presented. The cellulose acetate fibrous membranes were prepared by electrospinning. The middle membrane layer was magnetically loaded by impregnation with an aqueous ferrofluid of 8 nm magnetic iron oxide nanoparticles colloidally stabilized with a double layer of oleic acid. The nanoparticles show zero magnetic remanence due to their very small diameters and their soft magnetic properties. Changing the ferrofluid magnetic nanoparticle volume fraction, white papers with zero magnetic remanence and tunable saturation magnetization in the range of 0.5–3.5 emu/g were prepared. The dark coloring of the paper owing to the presence of the black magnetite nanoparticles was concealed by the external layers of pristine white cellulose acetate electrospun fibrous membranes.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2876
Author(s):  
Mian Fawaz Ahmed ◽  
Muhammad Asad Abbas ◽  
Azhar Mahmood ◽  
Nasir M. Ahmad ◽  
Hifza Rasheed ◽  
...  

Water contaminated with highly hazardous metals including arsenic (As) is one of the major challenges faced by mankind in the present day. To address this pressing issue, hybrid beads were synthesized with various concentrations of zero valent iron oxide nanoparticles, i.e., 20% (FeCh-20), 40% (FeCh-40) and 60% (FeCh-60) impregnated into a polymer of chitosan. These hybrid beads were employed as an adsorbent under the optimized conditions of pH and time to facilitate the efficient removal of hazardous arsenic by adsorption cum reduction processes. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer- Emmett-Teller BET, a porosity test and wettability analysis were performed to characterize these hybrid beads. The porosity and contact angle of the prepared hybrid beads decreased with an increase in nanoparticle concentration. The effects of various adsorption factors such as adsorbent composition, contact period, pH value and the initial adsorbate concentration were also evaluated to study the performance of these beads for arsenic treatment in contaminated water. FeCh-20, FeCh-40 and FeCh-60 have demonstrated 63%, 81% and 70% removal of arsenic at optimized conditions of pH 7.4 in 10 h, respectively. Higher adsorption of arsenic by FeCh-40 is attributed to its optimal porosity, hydrophilicity and the presence of appropriate nanoparticle contents. The Langmuir adsorption kinetics described the pseudo second order. Thus, the novel beads of FeCh-40 developed in this work are a potent candidate for the treatment of polluted water contaminated with highly toxic arsenic metals.


2013 ◽  
Vol 829 ◽  
pp. 752-756 ◽  
Author(s):  
Razieh Asrarian ◽  
Reza Jadidian ◽  
Hooshang Parham ◽  
Sara Haghtalab

Aluminum is the most widely used non ferrous metal, but its considered as a highly toxic element in drinking water at high concentration and the trace aluminum content in food must be controlled. This paper shows effective removal of aluminum from water and industrial wastewater by magnetic nanoparticle. The method is fast, simple, cheap, effective and safe for treatment of aluminum polluted waters. Preparation of adsorbent is easy and removal time is short. magnetic iron oxide nanoparticles (MIONPs) can adsorb up to 99.8% of 60 ng ml-1of Al ions from polluted water. The required time for complete removal of aluminum ions was 3 minutes. Variation of pH and high electrolyte concentration (NaCl) of the solution do not have considerable effect on the aluminum removal efficiency.


2020 ◽  
Author(s):  
Aayushi Biswas ◽  
Vanlalveni Chhangte ◽  
R. Lalfakzuala ◽  
Soumitra Nath ◽  
Samuel Lalthazuala Rokhum

<p>With an aim to introduce a new highly potent antimicrobial nanoparticles using an environment-friendly route, he present work reports the green synthesis of iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>NPs) utilizing <i>Mikania mikrantha</i> leaf extract and its application as efficient antimicrobial agent. The green Fe<sub>3</sub>O<sub>4</sub>NPs have been described by X-beam diffraction (XRD), Ultraviolet-Visible (UV-Vis) spectroscopy, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Fourier Transform-Infra Red (FT-IR) investigation. The TEM image shows the rhomboidal Fe<sub>3</sub>O<sub>4</sub>NPs with average mean sizes 20.27 nm. The FT-IR investigation proved Fe<sub>3</sub>O<sub>4</sub>NPs have been balanced out through the associations of steroids, terpenoids, flavonoids, phenyl propanoids, phenolic acids and proteins present in the leaf extract. The synthesized Fe<sub>3</sub>O<sub>4</sub>NPs shows a very high antibacterial and antifungal property against 5 bacterial strains such as <i>Bacillus cereus, Acinetobacter johnsonii, Pseudomonas aeruginosa, Achromobacter spanius </i>and <i>Chromobacterium pseudoviolaceum</i> strain, and 4 fungal strains (<i>Aspergillus niger, Penicillium citirinum, Fusarium oxysporium</i>, and <i>Candida albicans</i>). The green synthesized iron oxide nanoparticles can interfere metabolic activities of microorganisms which determine its antimicrobial properties and could bring a promising application in the fields of medicine. </p>


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2137
Author(s):  
Claudia Belviso ◽  
Giulia Guerra ◽  
Maryam Abdolrahimi ◽  
Davide Peddis ◽  
Federica Maraschi ◽  
...  

In this work, red mud (RM) and spinel iron oxide nanoparticles (SPIONs) were added to pure silica/alumina sources (SAs) and fly ash (FA) with the aim of synthesizing and investigating the magnetic behavior of different zeolites. SAs were used to synthesize zeolite with LTA topology (zeolite A) with the addition of both red mud and spinel iron oxide nanoparticles. FA and RM were mixed to synthesize sodalite whereas only FA with the addition of SPIONs was used to form zeolite with FAU-topology (zeolite X). All the synthetic products showed magnetic properties. However, zeolites with spinel iron oxide nanoparticles (zeolites A and X) showed ferromagnetic-like behavior. Sodalite was characterized by a reduction in saturation magnetization, whereas zeolite A with red mud displayed antiferromagnetic behavior. For the first time, all the synthetic products were tested for polluted water remediation by a persistent emerging contaminant, ofloxacin (OFL) antibiotic. The four zeolite types showed good adsorption affinity towards OFL under actual conditions (tap water, natural pH). All materials were also tested for OFL removal in real waters spiked with OFL 10 µg L−1. Satisfactory recoveries (90–92% in tap water, 83–87% in river water) were obtained for the two zeolites synthesized from industrial waste materials.


2016 ◽  
Vol 18 (2) ◽  
pp. 259-268 ◽  

<p>This paper reports on the fabrication, characterization and testing of iron oxide nanoparticles &ndash; powdered activated carbon (PAC) composites for water treatment and PAC regeneration by Fenton reactions. Different wet impregnation procedures and iron loadings were assessed in terms of organic micropollutant adsorption, by using the pharmaceutical diclofenac (DCF) as model compound. The preparation of a ferrihydrite-impregnated PAC with low iron content (~40.7 mg<sub>Fe</sub>/g<sub>PAC</sub>) and high BET surface area (1037 m<sup>2 </sup>g<sup>-1</sup>) was found to be the optimum, exhibiting excellent DCF adsorption capacity, similar to that of the original PAC (203 mg<sub>DCF</sub>/g<sub>PAC/Fe</sub>), with the adsorption isotherm satisfactorily fitted by both the Freundlich and Langmuir models. The regeneration of the ferrihydrite-PAC (Fe/PAC) indicated that the presence of iron-oxide nanoparticles is important for achieving a high regeneration efficiency by hydrogen peroxide, even at neutral pH. However, the solution pH had a significant effect on DCF uptake, being greater at acidic pH after the regeneration of the composite. Ongoing R&amp;D is aimed at material optimization and testing in a novel hybrid process scheme developed in author&rsquo;s laboratory, involving a continuous Fe/PAC &ndash; Fenton process in conjunction with a low pressure membrane separation process.&nbsp;</p>


2017 ◽  
Vol 105 (2) ◽  
Author(s):  
Gehan E. Sharaf El-Deen ◽  
Neama G. Imam ◽  
Refaat R. Ayoub

AbstractSuperparamagnetic iron oxide nanoparticles (IO-MNPs) coated with natural polymers, starch (IO-S MNPs) and dextrin (IO-D MNPs), were synthesized by modified co-precipitation method. IO and hybrid-IO-MNPs were characterized by XRD, SEM, HRTEM, FT-IR spectroscopy, vibrating sample magnetometer (VSM) and zeta potential (ZP). IO-S MNPs and IO-D MNPs have IO core-shell structure with core of 10.8 nm and 13.8 nm and shell of 7.5 nm and 5.9 nm, respectively. The efficiency of the hybrid IO-MNPs for sorption of


Sign in / Sign up

Export Citation Format

Share Document