scholarly journals Development and evaluation of a duplex real-time RT-PCR for detection and differentiation of virulent and variant strains of porcine epidemic diarrhea viruses from the United States

2014 ◽  
Vol 207 ◽  
pp. 154-157 ◽  
Author(s):  
Leyi Wang ◽  
Yan Zhang ◽  
Beverly Byrum
2020 ◽  
Vol 51 (2) ◽  
pp. 145-154
Author(s):  
Dmytro Masiuk ◽  
Eleonora Yesina ◽  
Tetiana Vasylenko ◽  
Andrii Kokariev ◽  
Volodymyr Hlebeniuk ◽  
...  

The rapid spread of porcine epidemic diarrhea (PED) in different countries in a short time while and the significant economic damage caused by it were important reasons for conducting long-term monitoring studies in Ukraine. PED monitoring researches conduct carry out during 2014-2018 using RT-PCR and ELISA showed the presence of infection in 14 (66.67%) of 21 examined regions of Ukraine. For the period 2014- 2018, the proportion of PED cases rate was the lowest in 2017 (1.76%) and the highest in 2016 (48.03%). Over the entire period, the percentage seropositive animals progressively decreased to a seronegative status indicator defined in sows in 2018. The results of determination of the virulence of 40 strains of PED virus from different regions of Ukraine using the RT-PCR method proved the circulation of highly virulent strains. The phylogenetic analysis demonstrated that the endemic strain of PED virus is included in the cluster of North American strains and the Chinese strains. Important is the fact that it is not included in the group of European low- virulent S-INDEL strains. Thus, the obtained data indicate a high probability that the PED virus was introduced into Ukraine from the territory of the Asian continent or the United States of America (a high probability that the PED virus was translocated from the territory of the Asian continent or the United States of America into Ukraine).


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 701-701
Author(s):  
K.-S. Ling ◽  
R. Li ◽  
D. Groth-Helms ◽  
F. M. Assis-Filho

In recent years, viroid disease outbreaks have resulted in serious economic losses to a number of tomato growers in North America (1,2,3). At least three pospiviroids have been identified as the causal agents of tomato disease, including Potato spindle tuber viroid (PSTVd), Tomato chlorotic dwarf viroid (TCDVd), and Mexican papita viroid (MPVd). In the spring of 2013, a severe disease outbreak with virus-like symptoms (chlorosis and plant stunting) was observed in a tomato field located in the Dominican Republic, whose tomato production is generally exported to the United States in the winter months. The transplants were produced in house. The disease has reached an epidemic level with many diseased plants pulled and disposed of accordingly. Three samples collected in May of 2013 were screened by ELISA against 16 common tomato viruses (Alfalfa mosaic virus, Cucumber mosaic virus, Impatiens necrotic spot virus, Pepino mosaic virus, Potato virus X, Potato virus Y, Tobacco etch virus, Tobacco mosaic virus, Tobacco ringspot virus, Tomato aspermy virus, Tomato bushy stunt virus, Tomato mosaic virus, Tomato ringspot virus, Tomato spotted wilt virus, Groundnut ringspot virus, and Tomato chlorotic spot virus), a virus group (Potyvirus group), three bacteria (Clavibacter michiganensis subsp. michiganensis, Pectobacterium atrosepticum, and Xanthomonas spp.), and Phytophthora spp. No positive result was observed, despite the presence of symptoms typical of a viral-like disease. Further analysis by RT-PCR using Agdia's proprietary pospiviroid group-specific primer resulted in positive reactions in all three samples. To determine which species of pospiviroid was present in these tomato samples, full-genomic products of the expected size (~360 bp) were amplified by RT-PCR using specific primers for PSTVd (4) and cloned using TOPO-TA cloning kit (Invitrogen, CA). A total of 8 to 10 clones from each isolate were selected for sequencing. Sequences from each clone were nearly identical and the predominant sequence DR13-01 was deposited in GenBank (Accession No. KF683200). BLASTn searches into the NCBI database demonstrated that isolate DR13-01 shared 97% sequence identity to PSTVd isolates identified in wild Solanum (U51895), cape gooseberry (EU862231), or pepper (AY532803), and 96% identity to the tomato-infecting PSTVd isolate from the United States (JX280944). The relatively lower genome sequence identity (96%) to the tomato-infecting PSTVd isolate in the United States (JX280944) suggests that PSTVd from the Dominican Republic was likely introduced from a different source, although the exact source that resulted in the current disease outbreak remains unknown. It may be the result of an inadvertent introduction of contaminated tomato seed lots or simply from local wild plants. Further investigation is necessary to determine the likely source and route of introduction of PSTVd identified in the current epidemic. Thus, proper control measures could be recommended for disease management. The detection of this viroid disease outbreak in the Dominican Republic represents further geographic expansion of the viroid disease in tomatoes beyond North America. References: (1). K.-S. Ling and M. Bledsoe. Plant Dis. 93:839, 2009. (2) K.-S. Ling and W. Zhang. Plant Dis. 93:1216, 2009. (3) K.-S. Ling et al. Plant Dis. 93:1075, 2009. (4) A. M. Shamloul et al. Can. J. Plant Pathol. 19:89, 1997.


Plant Disease ◽  
2006 ◽  
Vol 90 (4) ◽  
pp. 528-528 ◽  
Author(s):  
C. J. Maroon-Lango ◽  
J. Hammond ◽  
S. Warnke ◽  
R. Li ◽  
R. Mock

Initial reports of the presence of Lolium latent virus (LLV) in Lolium perenne L. and L. multiflorum Lam. breeding clones in Germany, the Netherlands, France (2), and recently the United Kingdom (3,4; described as Ryegrass latent virus prior to identification as LLV) prompted us to evaluate clonally propagated Lolium plants from the United States. Four genetically distinct plants (viz., MF22, MF48, MF125, and MF132) that have been maintained clonally for 5 years from a Lolium perenne × L. multiflorum hybrid population established in the United States exhibited either no symptoms or mild chlorotic flecking that coalesced to form chlorotic to necrotic streaking on the leaves. All four clonal plants tested positive using reverse transcription-polymerase chain reaction (RT-PCR) with the Potexvirus group PCR test (Agdia, Inc., Elkhart, IN), whereas all clones but MF48 tested positive using the Potyvirus group PCR test (Agdia, Inc.). No amplicons were obtained when the same plants were tested for tobamovirus, carlavirus, and closterovirus using appropriate virus group-specific primers. Cloning and sequencing of the potexviral amplicons revealed very high sequence identity with the comparable region of LLV-UK (GenBank Accession No. DQ333886), whereas those of the potyviral amplicons (GenBank Accession Nos. DQ355837 and DQ355838) were nearly identical with the comparable region of Ryegrass mosaic virus (RGMV), a rymovirus first reported from the United States in 1957 (1). Using indirect enzyme-linked immunosorbent assay (ELISA), extracts from all four Lolium clonal propagations tested positive for LLV using the antiserum raised to LLV-Germany (courtesy of Dr. Huth), whereas the potyvirus-positive results from RT-PCR of the three clones were confirmed using indirect ELISA with the broad spectrum potyvirus monoclonal antibody, PTY-1. LLV from singly or dually infected Lolium clones was transmitted to Nicotiana benthamiana Domin. but not to N. tabacum L. by mechanical inoculation. LLV was purified from infected N. benthamiana. Similar sized flexuous rods were observed using electron microscopy in leaf dip samples from Lolium clones and aliquots of the virions purified from N. benthamiana. References: (1) G. W. Bruehl et al. Phytopathology 47:517, 1957. (2) W. Huth et al. Agronomie 15:508, 1995. (3) R. Li et al. Asian Conf. Plant Pathol. 2:89, 2005. (4) C. Maroon-Lango et al. Int. Congr. Virol. 13:63, 2005.


Plant Disease ◽  
2021 ◽  
Author(s):  
Gardenia Orellana ◽  
Alexander V Karasev

Coleus scutellarioides (syn. Coleus blumei) is a widely grown evergreen ornamental plant valued for its highly decorative variegated leaves. Six viroids, named Coleus blumei viroid 1 to 6 (CbVd-1 to -6) have been identified in coleus plants in many countries of the world (Nie and Singh 2017), including Canada (Smith et al. 2018). However there have been no reports of Coleus blumei viroids occurring in the U.S.A. (Nie and Singh 2017). In April 2021, leaf tissue samples from 27 cultivars of C. blumei, one plant of each, were submitted to the University of Idaho laboratory from a commercial nursery located in Oregon to screen for the presence of viroids. The sampled plants were selected randomly and no symptoms were apparent in any of the samples. Total nucleic acids were extracted from each sample (Dellaporta et al. 1983) and used in reverse-transcription (RT)-PCR tests (Jiang et al. 2011) for the CbVd-1 and CbVd-5 with the universal primer pair CbVds-P1/P2, which amplifies the complete genome of all members in the genus Coleviroid (Jiang et al. 2011), and two additional primer pairs, CbVd1-F1/R1 and CbVd5-F1/R1, specific for CbVd-1 and CbVd-5, respectively (Smith et al. 2018). Five C. blumei plants (cvs Fire Mountain, Lovebird, Smokey Rose, Marrakesh, and Nutmeg) were positive for a coleviroid based on the observation of the single 250-nt band in the RT-PCR test with CbVds-P1/P2 primers. Two of these CbVd-1 positive plants (cvs Lovebird and Nutmeg) were also positive for CbVd-1 based on the presence of a single 150-nt band in the RT-PCR assay with CbVd1-F1/R1 primers. One plant (cv Jigsaw) was positive for CbVd-1, i.e. showing the 150-nt band in RT-PCR with CbVd1-F1/R1 primers, but did not show the ca. 250-bp band in RT-PCR with primers CbVds-P1/P2. None of the tested plants were positive for CbVd-5, either with the specific, or universal primers. All coleviroid- and CbVd-1-specific PCR products were sequenced directly using the Sanger methodology, and revealed whole genomes for five isolates of CbVd-1 from Oregon, U.S.A. The genomes of the five CbVd-1 isolates displayed 96.9-100% identity among each other and 96.0-100% identity to the CbVd-1 sequences available in GenBank. Because the sequences from cvs Lovebird, Marrakesh, and Nutmeg, were found 100% identical, one sequence was deposited in GenBank (MZ326145). Two other sequences, from cvs Fire Mountain and Smokey Rose, were deposited in the GenBank under accession numbers MZ326144 and MZ326146, respectively. To the best of our knowledge, this is the first report of CbVd-1 in the United States.


Plant Disease ◽  
2006 ◽  
Vol 90 (6) ◽  
pp. 833-833 ◽  
Author(s):  
C. A. Baker ◽  
L. Breman ◽  
L. Jones

In the fall of 1998, the Division of Plant Industry (DPI) received vegetative propagations of Scutellaria longifolia (skullcap) with symptoms of foliar mosaic, chlorotic/necrotic ringspots, and wavy line patterns from a nursery in Manatee County. Flexuous particles approximately 500 nm long were found with electron microscopy. The plants tested positive for Papaya mosaic virus (PaMV) in an enzyme-linked immunosorbent assay (ELISA) test with antiserum to PaMV (Agdia, Elkhart, IN). However, in immunodiffusion tests (antiserum from D. Purcifull, University of Florida), this virus gave a reaction of partial identity indicating it was related but not identical to PaMV (1). The original infected plants were kept in a greenhouse. In January 2005, a specimen of Crossandra infundibuliformis (firecracker plant) with mosaic symptoms was submitted to the DPI from a nursery in Alachua County. Inclusions found with light microscopy and particles found with electron microscopy indicated that this plant was infected with a potexvirus. This was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) with primers designed to detect members of the virus family Potexviridae (3). These plants reacted positive to PaMV antiserum in ELISA and gave a reaction of partial identity to PaMV in immunodiffusion. A specimen of Portulaca grandiflora (moss rose) with distorted leaves found at a local retail store was also tested and gave the same results. Leaves from each of the three plant species were rubbed onto a set of indicator plants using Carborundum and potassium phosphate buffer. Total RNA was extracted from symptomatic indicator plants of Nicotiana benthamiana. RT-PCR (3) was performed, and PCR products were sequenced directly. Sequences of approximately 700 bp were obtained for all three plant species and showed 98% identity with each other. BLAST search results showed that these sequences were 93% identical to an Alternanthera mosaic virus (AltMV) sequence at the nucleotide level but only 76% identical to PaMV. The amino acid sequences were 98 and 82% identical to AltMV and PaMV, respectively. The PCR products of the virus from Scutellaria sp. were cloned, resequenced, and the sequence was entered into the GenBank (Accession No. DQ393785). The bioassay results matched those found for AltMV in Australia (2) and the northeastern United States (4), except that the Florida viruses infected Datura stramonium and Digitalis purpurea (foxglove). The virus associated with the symptoms of these three plants appears to be AltMV and not PaMV. AltMV has been found in ornamental plants in Australia, Italy, and the United States (Pennsylvania, Maryland, and now Florida). Since this virus is known to infect several plants asymptomatically and can be easily confused with PaMV serologically, it is likely that the distribution of this virus is much wider than is known at this time. References: (1) L. L. Breman. Plant Pathology Circular No. 396. Fla. Dept. Agric. Consum. Serv. DPI, 1999. (2) A. D. W. Geering and J. E. Thomas. Arch Virol 144:577, 1999. (3) A. Gibbs et al. J Virol Methods 74:67, 1998. (4) J. Hammond et al. Arch Virol. 151:477, 2006.


2019 ◽  
Vol 116 (8) ◽  
pp. 3146-3154 ◽  
Author(s):  
Nicholas G. Reich ◽  
Logan C. Brooks ◽  
Spencer J. Fox ◽  
Sasikiran Kandula ◽  
Craig J. McGowan ◽  
...  

Influenza infects an estimated 9–35 million individuals each year in the United States and is a contributing cause for between 12,000 and 56,000 deaths annually. Seasonal outbreaks of influenza are common in temperate regions of the world, with highest incidence typically occurring in colder and drier months of the year. Real-time forecasts of influenza transmission can inform public health response to outbreaks. We present the results of a multiinstitution collaborative effort to standardize the collection and evaluation of forecasting models for influenza in the United States for the 2010/2011 through 2016/2017 influenza seasons. For these seven seasons, we assembled weekly real-time forecasts of seven targets of public health interest from 22 different models. We compared forecast accuracy of each model relative to a historical baseline seasonal average. Across all regions of the United States, over half of the models showed consistently better performance than the historical baseline when forecasting incidence of influenza-like illness 1 wk, 2 wk, and 3 wk ahead of available data and when forecasting the timing and magnitude of the seasonal peak. In some regions, delays in data reporting were strongly and negatively associated with forecast accuracy. More timely reporting and an improved overall accessibility to novel and traditional data sources are needed to improve forecasting accuracy and its integration with real-time public health decision making.


Sign in / Sign up

Export Citation Format

Share Document