Tectonic controls on magmatic systems: Evidence from a three-dimensional anisotropic electrical resistivity model of Ceboruco Volcano

Author(s):  
Philip Hering ◽  
Lourdes González-Castillo ◽  
César Castro ◽  
Andreas Junge ◽  
Colin Brown ◽  
...  
2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Masahiro Ichiki ◽  
Toshiki Kaida ◽  
Takashi Nakayama ◽  
Satoshi Miura ◽  
Mare Yamamoto ◽  
...  

AbstractAn electrical resistivity model beneath Azumayama Volcano, NE Japan, is explored using magnetotelluric method to probe the magma/hydrothermal fluid distribution. Azumayama is one of the most concerning active volcanoes capable of producing a potential eruption triggered by the 2011 Tohoku-Oki Earthquake. The three-dimensional resistivity model reveals a conductive magma reservoir (< 3 Ωm) at depths of 3–15 km below sea level (bsl). The 67% and 90% confidence intervals of resistivity are 0.2–5 Ωm and 0.02–70 Ωm, respectively, for the magma reservoir. We assumed dacitic melt + rock at a shallow depth of 4 km bsl and andesitic melt + rock at a greater depth of 9 km bsl. The confidence interval of resistivity cannot be explained by using dacitic melt + rock condition at a depth of 4 km bsl. This suggests that very conductive hydrothermal fluids coexist with dacitic melt and rock in the shallow part of the magma reservoir. For the depth of 9 km bsl, the 67% confidence interval of resistivity is interpreted as water-saturated (8.0 weight %) andesitic melt–mafic rock complex with melt volume fractions greater than 4 volume %, while the shear wave velocity requires the fluid and/or melt volume fraction of 6–7 volume % at that depth. Considering the fluid and/or melt volume fraction of 6–7 volume %, the conductive hydrous phase is likewise required to explain the wide range of the 67% confidence interval of resistivity. The Mogi inflation source determined from geodetic data lies on the resistive side near the top boundary of the conductive magma reservoir at a depth of 2.7 or 3.7 km bsl. Assuming that the resistivity of the inflation source region is above the upper bound of the confidence interval of resistivity for the conductive magma reservoir and that the source region is composed of hydrothermal fluid + rock, the resistivity of the source region is explained by a hydrothermal fluid volume fraction below 5 volume %, which is the percolation threshold porosity in an effusive eruption. This indicates that the percolation threshold characterizes the inflation source region.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Troiano ◽  
R. Isaia ◽  
M. G. Di Giuseppe ◽  
F. D. A. Tramparulo ◽  
S. Vitale

Abstract The central sector of the Campi Flegrei volcano, including the Solfatara maar and Pisciarelli fumarole field, is currently the most active area of the caldera as regards seismicity and gaseous emissions and it plays a significant role in the ongoing unrest. However, a general volcano-tectonic reconstruction of the entire sector is still missing. This work aims to depict, for the first time, the architecture of the area through the application of deep Electrical Resistivity Tomography. We reconstructed a three-dimensional resistivity model for the entire sector. Results provide useful elements to understand the present state of the system and the possible evolution of the volcanic activity and shed solid bases for any attempt to develop physical-mathematical models investigating the ongoing phenomena.


Author(s):  
O. J. Airen ◽  
P. S. Iyere

Geophysical investigations using three-dimensional (3D) grid formation was carried out in Ovia North East Local Government Area of Edo State, Nigeria for subsurface lithology characterisation so as to generate a comprehensive basemap of the study area. Twelve (12) traverses in form of a rectangular grid were occupied for the 2D Electrical Resistivity Imaging (ERI) using the Wenner array. The 2D were all collated to form the 3D grid. The 2D Electrical Resistivity data was processed by the inversion of the 2D apparent resistivity data using the DIPRO software to generate the 2D inverted resistivity section while the 3D inverted resistivity model was done by inverting all the twelve traverses using 3DEarthimager software to model the 3D cube. The results of the 2D ERI revealed three (03) to five (05) resistivity structures across the twelve traverses indicating clay/clayey sand, sand and sandstone on a 200 and 300 m lateral distance and corresponding depth of 39.6 and 57.3 m across each traverses. Resistivity values generally varies from 16.8 – 45302 Ωm across Traverse 1 – 12. The layer horizontal depth slices of the 3D inverted resistivity distribution are in six layers, which are; 0 - 5 m, 5 – 10.8 m, 10.8 – 17.4 m, 17.4 – 25 m, 25 – 33.7 m and 33.7 – 43.8 m. The 3D inverted resistivity model within the study area covered lateral plane (the roll axis), 300 m, in the x plane (the pitch axis), 200 m lateral distance was covered and in the depth plane (the yaw axis), a maximum depth of 66 m is imaged. The inverted 3D Resistivity values generally vary from 189 - 6149 Ωm across the study area. The resistivity structures delineated from the 3D model are clayey sand and sand.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Maria Jose Segovia ◽  
Daniel Diaz ◽  
Katarzyna Slezak ◽  
Felipe Zuñiga

AbstractTo analyze the process of subduction of the Nazca and South American plates in the area of the Southern Andes, and its relationship with the tectonic and volcanic regime of the place, magnetotelluric measurements were made through a transversal profile of the Chilean continental margin. The data-processing stage included the analysis of dimensional parameters, which as first results showed a three-dimensional environment for periods less than 1 s and two-dimensional for periods greater than 10 s. In addition, through the geomagnetic transfer function (tipper), the presence of structural electrical anisotropy was identified in the data. After the dimensional analysis, a deep electrical resistivity image was obtained by inverting a 2D and a 3D model. Surface conductive anomalies were obtained beneath the central depression related to the early dehydration of the slab and the serpentinization process of the mantle that coincides in location with a discontinuity in the electrical resistivity of a regional body that we identified as the Nazca plate. A shallow conductive body was located around the Calbuco volcano and was correlated with a magmatic chamber or reservoir which in turn appears to be connected to the Liquiñe Ofqui fault system and the Andean Transverse Fault system. In addition to the serpentinization process, when the oceanic crust reaches a depth of 80–100 km, the ascending fluids produced by the dehydration and phase changes of the minerals present in the oceanic plate produce basaltic melts in the wedge of the subcontinental mantle that give rise to an eclogitization process and this explains a large conductivity anomaly present beneath the main mountain range.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Matthew J. Comeau ◽  
Michael Becken ◽  
Alexey V. Kuvshinov ◽  
Sodnomsambuu Demberel

AbstractCrustal architecture strongly influences the development and emplacement of mineral zones. In this study, we image the crustal structure beneath a metallogenic belt and its surroundings in the Bayankhongor area of central Mongolia. In this region, an ophiolite belt marks the location of an ancient suture zone, which is presently associated with a reactivated fault system. Nearby, metamorphic and volcanic belts host important mineralization zones and constitute a significant metallogenic belt that includes sources of copper and gold. However, the crustal structure of these features, and their relationships, are poorly studied. We analyze magnetotelluric data acquired across this region and generate three-dimensional electrical resistivity models of the crustal structure, which is found to be locally highly heterogeneous. Because the upper crust (< 25 km) is found to be generally highly resistive (> 1000 Ωm), low-resistivity (< 50 Ωm) features are conspicuous. Anomalous low-resistivity zones are congruent with the suture zone, and ophiolite belt, which is revealed to be a major crustal-scale feature. Furthermore, broadening low-resistivity zones located down-dip from the suture zone suggest that the narrow deformation zone observed at the surface transforms to a wide area in the deeper crust. Other low-resistivity anomalies are spatially associated with the surface expressions of known mineralization zones; thus, their links to deeper crustal structures are imaged. Considering the available evidence, we determine that, in both cases, the low resistivity can be explained by hydrothermal alteration along fossil fluid pathways. This illustrates the pivotal role that crustal fluids play in diverse geological processes, and highlights their inherent link in a unified system, which has implications for models of mineral genesis and emplacement. The results demonstrate that the crustal architecture—including the major crustal boundary—acts as a first‐order control on the location of the metallogenic belt.


1964 ◽  
Vol 4 (04) ◽  
pp. 285-290
Author(s):  
Edward P. Miesch ◽  
Paul B. Crawford

Abstract A study was made of the effect of permeable and impermeable lenses in a reservoir on the production capacity of a well. Both steady-state and unsteady-state data were obtained. An electrical resistivity model was used to obtain the steady- state data and thermal models were constructed to obtain the unsteady-state data. The productivity of a well is affected very greatly only when the lenses are close to the well. The effect of circular lenses on the Productivity ratio can be correlated with the distance from the center of the lens to the center of the well divided by the radius of the lens. Then this dimensionless distance is equal to six or greater, the effect of the lenses on production capacity will be negligible. The pseudo steady-state productivity of a heterogeneous reservoir can be predicted using steady- state data. Introduction Many analytical solutions of reservoir behavior assume that reservoir rock is uniform and homogeneous. Although this assumption is used, all of the data from core analyses and well logging indicate that the reservoirs are heterogeneous. Very little work has been done on the performance of heterogeneous reservoirs. The work of Landrum, et al. showed that transient phenomena in oil reservoirs could be studied with thermal models. Pickering and Cotman used thermal models to study flow in stratified reservoirs and investigated the effect of inhomogeneities in oil reservoirs on transient flow performance. Loucks made a mathematical study of the pressure build-up in a system composed of two concentric regions of different permeability. Root, Silberberg and Pirson studied the effect of me growth of the flooded region on water influx predictions using a thermal model consisting of three concentric cylindrical regions of different thermal properties which simulated the aquifer, the flooded region and the unflooded portion of the original hydrocarbon region. Tomme, et al. made a mathematical study of vertical fractures. The object of this investigation was to study the effect of highly permeable and impermeable lenses in the vicinity of the wellbore on the pressure depletion history of the well. Steady- state data were obtained for both conductive and nonconductive lenses that completely penetrated the formation. The lenses were symmetrically located at various distances from the wellbore. The unsteady-state data were obtained on seven thermal models. EXPERIMENTAL EQUIPMENT AND PROCEDURE STEADY-STATE DATA The steady-state data were obtained from an electrical resistivity model 30 in. in diameter and approximately 1 1/2 in. deep. The outside of the model was lined with a 30-in. diameter copper strip, which served as the outer boundary of the reservoir. The bottom was covered with a sheet of plexiglass so that it would be nonconductive. The model was filled with a slightly saline solution. The well size was varied from an 0.064-in. diameter copper wire to a 10-in. diameter copper cylinder. Readings were taken with an impedance bridge using AC current to prevent polarization at the contacts. Copper and wax lenses were used to represent infinitely conductive and nonconductive lenses, respectively. The resistance was first measured for each well diameter with no lenses in the reservoir. Then the conductive and nonconductive lenses were spaced symmetrically at various distances from the well and the resistance read from each lens location. The diameters of the conductive lenses were 3, 1.022 and 0.624 in., and those of the nonconductive lenses were 3, 2.25 and 1.563 in. SPEJ P. 285ˆ


2009 ◽  
Vol 46 (2) ◽  
pp. 139-154 ◽  
Author(s):  
Erşan Türkoğlu ◽  
Martyn Unsworth ◽  
Dinu Pana

Geophysical studies of upper mantle structure can provide constraints on diamond formation. Teleseismic and magnetotelluric data can be used in diamond exploration by mapping the depth of the lithosphere–asthenosphere boundary. Studies in the central Slave Craton and at Fort-à-la-Corne have detected conductors in the lithospheric mantle close to, or beneath, diamondiferous kimberlites. Graphite can potentially explain the enhanced conductivity and may imply the presence of diamonds at greater depth. Petrologic arguments suggest that the shallow lithospheric mantle may be too oxidized to contain graphite. Other diamond-bearing regions show no upper mantle conductor suggesting that the correlation with diamondiferous kimberlites is not universal. The Buffalo Head Hills in Alberta host diamondiferous kimberlites in a Proterozoic terrane and may have formed in a subduction zone setting. Long period magnetotelluric data were used to investigate the upper mantle resistivity structure of this region. Magnetotelluric (MT) data were recorded at 23 locations on a north–south profile extending from Fort Vermilion to Utikuma Lake and an east–west profile at 57.2°N. The data were combined with Lithoprobe MT data and inverted to produce a three-dimensional (3-D) resistivity model with the asthenosphere at 180–220 km depth. This model did not contain an upper mantle conductor beneath the Buffalo Head Hills kimberlites. The 3-D inversion exhibited an eastward dipping conductor in the crust beneath the Kiskatinaw terrane that could represent the fossil subduction zone that supplied the carbon for diamond formation. The low resistivity at crustal depths in this structure is likely due to graphite derived from subducted organic material.


Sign in / Sign up

Export Citation Format

Share Document