WITHDRAWN: Overexpression of GLI2 induces odontogenic differentiation in human dental pulp stem cells through activation of the Wnt/β-catenin signaling pathway

Life Sciences ◽  
2019 ◽  
pp. 117178
Author(s):  
Haiying Zheng ◽  
Chao Tian ◽  
Xin Zeng ◽  
Tao Liu
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Wenzhen Lin ◽  
Li Gao ◽  
Wenxin Jiang ◽  
Chenguang Niu ◽  
Keyong Yuan ◽  
...  

2019 ◽  
Vol 20 (22) ◽  
pp. 5778
Author(s):  
Yeon Kim ◽  
Joo-Yeon Park ◽  
Hyun-Joo Park ◽  
Mi-Kyoung Kim ◽  
Yong-Il Kim ◽  
...  

Pentraxin-3 (PTX3) is recognized as a modulator of inflammation and a mediator of tissue repair. In this study, we characterized the role of PTX3 on some biological functions of human dental pulp stem cells (HDPSCs). The expression level of PTX3 significantly increased during osteogenic/odontogenic differentiation of HDPSCs, whereas the knockdown of PTX3 decreased this differentiation. Silencing of PTX3 in HDPSCs inhibited their migration and C-X-C chemokine receptor type 4 (CXCR4) expression. Our present study indicates that PTX3 is involved in osteogenic/odontogenic differentiation and migration of HDPSCs, and may contribute to the therapeutic potential of HDPSCs for regeneration and repair.


Biomaterials ◽  
2011 ◽  
Vol 32 (31) ◽  
pp. 7822-7830 ◽  
Author(s):  
Jing Wang ◽  
Haiyun Ma ◽  
Xiaobing Jin ◽  
Jiang Hu ◽  
Xiaohua Liu ◽  
...  

Author(s):  
Ning Wang ◽  
Xiao Han ◽  
Haoqing Yang ◽  
Dengsheng Xia ◽  
Zhipeng Fan

Background: Tooth tissue regeneration mediated by mesenchymal stem cells (MSCs) has become the most ideal treatment. Although the known regulatory mechanism and some achievements have been discovered, directional differentiation cannot effectively induce regeneration of tooth tissue. In this study, we intended to explore the function and mechanism of miR-6807-5p and its target gene METTL7A in odontogenic differentiation.Methods: In this study, human dental pulp stem cells (DPSCs) were used. Alkaline phosphatase (ALP), Alizarin red staining (ARS), and calcium ion quantification were used to detect the odontogenic differentiation of miR-6807-5p and METTL7A. Real-time RT-PCR, western blot, dual-luciferase reporter assay, and pull-down assay with biotinylated miRNA were used to confirm that METTL7A was the downstream gene of miR-6807-5p. Protein mass spectrometry and co-immunoprecipitation (Co-IP) were used to detect that SNRNP200 was the co-binding protein of METTL7A.Results: After mineralized induction, the odontogenic differentiation was enhanced in the miR-6807-5p-knockdown group and weakened in the miR-6807-5p-overexpressed group compared with the control group. METTL7A was the downstream target of miR-6807-5p. After mineralized induction, the odontogenic differentiation was weakened in the METTL7A-knockdown group and enhanced in the METTL7A-overexpressed group compared with the control group. SNRNP200 was the co-binding protein of METTL7A. The knockdown of SNRNP200 inhibited the odontogenic differentiation of DPSCs.Conclusion: This study verified that miR-6807-5p inhibited the odontogenic differentiation of DPSCs. The binding site of miR-6807-5p was the 3′UTR region of METTL7A, which was silenced by miR-6807-5p. METTL7A promoted the odontogenic differentiation of DPSCs. SNRNP200, a co-binding protein of METTL7A, promoted the odontogenic differentiation of DPSCs.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jintao Wu ◽  
Na Li ◽  
Yuan Fan ◽  
Yanqiu Wang ◽  
Yongchun Gu ◽  
...  

The calcined tooth powder (CTP), a type of allogeneic biomimetic mineralized material, has been confirmed that can promote new bone formation when obtained at high temperature. The aim of this study was to investigate effects of the conditioned medium of calcined tooth powder (CTP-CM) on the osteogenic and odontogenic differentiation of human dental pulp stem cells (hDPSCs) and the underlying mechanisms involved. First, ALP activity assay determined that 200 μg/mL was the optimal concentration of CTP-CM for the following experiments. CTP-CM had no significant effect on the proliferation of hDPSCs as indicated by CCK-8 and FCM analysis. Both the gene and protein (DSPP/DSPP, RUNX2/RUNX2, OCN/OCN, OSX/OSX, OPN/OPN, ALP/ALP, and COL-1/COL-1) expression levels increased in the CTP-CM-induced hDPSC group as compared with those in the control group at day 3 or 7, showing the positive regulation of CTP-CM on the osteo/odontogenic differentiation of hDPSCs. Mechanistically, MAPK signaling pathways were activated after the CTP-CM treatment, and the inhibitors targeting MAPK were identified which weakened the effects of CTM-CM on the committed differentiation of hDPSCs. These findings could lead to the creation of stem cell therapies for dental regeneration.


Sign in / Sign up

Export Citation Format

Share Document