Silencing STAT3 enhances sensitivity of cancer cells to doxorubicin and inhibits tumor progression

Life Sciences ◽  
2021 ◽  
Vol 275 ◽  
pp. 119369
Author(s):  
Navneet Joshi ◽  
Farnaz Hajizadeh ◽  
Ehsan Ansari Dezfouli ◽  
Angelina Olegovna Zekiy ◽  
Mohsen Nabi Afjadi ◽  
...  
2021 ◽  
Vol 9 (1) ◽  
pp. e001341
Author(s):  
Chunxiao Li ◽  
Xiaofei Xu ◽  
Shuhua Wei ◽  
Ping Jiang ◽  
Lixiang Xue ◽  
...  

Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.


2009 ◽  
Vol 20 (24) ◽  
pp. 5127-5137 ◽  
Author(s):  
Kai-Wen Hsu ◽  
Rong-Hong Hsieh ◽  
Chew-Wun Wu ◽  
Chin-Wen Chi ◽  
Yan-Hwa Wu Lee ◽  
...  

The c-Myc promoter binding protein 1 (MBP-1) is a transcriptional suppressor of c-myc expression and involved in control of tumorigenesis. Gastric cancer is one of the most frequent neoplasms and lethal malignancies worldwide. So far, the regulatory mechanism of its aggressiveness has not been clearly characterized. Here we studied roles of MBP-1 in gastric cancer progression. We found that cell proliferation was inhibited by MBP-1 overexpression in human stomach adenocarcinoma SC-M1 cells. Colony formation, migration, and invasion abilities of SC-M1 cells were suppressed by MBP-1 overexpression but promoted by MBP-1 knockdown. Furthermore, the xenografted tumor growth of SC-M1 cells was suppressed by MBP-1 overexpression. Metastasis in lungs of mice was inhibited by MBP-1 after tail vein injection with SC-M1 cells. MBP-1 also suppressed epithelial-mesenchymal transition in SC-M1 cells. Additionally, MBP-1 bound on cyclooxygenase 2 (COX-2) promoter and downregulated COX-2 expression. The MBP-1-suppressed tumor progression in SC-M1 cells were through inhibition of COX-2 expression. MBP-1 also exerted a suppressive effect on tumor progression of other gastric cancer cells such as AGS and NUGC-3 cells. Taken together, these results suggest that MBP-1–suppressed COX-2 expression plays an important role in the inhibition of growth and progression of gastric cancer.


2013 ◽  
Vol 11 (4) ◽  
pp. 381-392 ◽  
Author(s):  
Natalie Ludyga ◽  
Natasa Anastasov ◽  
Michael Rosemann ◽  
Jana Seiler ◽  
Nadine Lohmann ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii220-ii220
Author(s):  
Chenran Wang ◽  
Michael Haas ◽  
Syn Yeo ◽  
Ritama Paul ◽  
Fuchun Yang ◽  
...  

Abstract Activation of mTORC1 plays a significant role in cancer development and progression. However, the metabolic mechanisms to sustain mTORC1 activation in stressed cancer cells are still underappreciated. Autophagy, one downstream process of mTORC1, is proposed to be suppressed under the condition of mTORC1 hyper-activation. Interestingly, we recently revealed higher autophagy activity in various Tsc-deficient tumor cells with mTORC1 hyper-activity. Nevertheless, the functions and mechanisms of autophagy in regulating mTORC1 in cancer cells are not well understood. In this study, we revealed a strong association of altered mRNA levels in mTORC1 upstream and downstream genes with poor prognosis of glioma patients. Our metabolic and molecular studies indicated that autophagy mediated lipid catabolism was essential to sustain mTORC1 activity in glioma cells under energy stresses. We found that autophagy inhibitors or fatty acid oxidation (FAO) inhibition in combination with 2-Deoxy-D-glucose (2DG) decreased oxidative phosphorylation, ATP production, mTORC1 activity, and survival of glioma cells in vitro. Consistently, the combination of chloroquine (CQ) or FAO inhibitors with 2DG effectively suppressed the progression of xenografted glioma with mTORC1 hyperactivation in mice. This study established a novel autophagy/lipid degradation/FAO/ATP pathway that maintains high mTORC1 signaling and tumor progression in brain cancer cells under energy stresses. The requirement of lipophagy in brain cancers may provide an opportunity to develop new molecular therapeutic targets to counteract mTORC1 for tumor progression.


BMC Cancer ◽  
2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Amy V Paschall ◽  
Mary A Zimmerman ◽  
Christina M Torres ◽  
Dafeng Yang ◽  
May R Chen ◽  
...  

2001 ◽  
Vol 285 (4) ◽  
pp. 1012-1017 ◽  
Author(s):  
Petra Bareis ◽  
Giovanna Bises ◽  
Martin G. Bischof ◽  
Heide S. Cross ◽  
Meinrad Peterlik

2021 ◽  
Vol 17 (12) ◽  
pp. 2364-2373
Author(s):  
Song Wang ◽  
Zifeng Luo ◽  
Xinke Zhou ◽  
Chong Wang ◽  
Yuanwei Luo ◽  
...  

Breast cancer is still threatening many people’ lives, hence novel targeted therapies are urgently required to improve the poor outcome of breast cancer patients. Herein, our study aimed to explore the potential of nanoparticles (NPs)-loaded with VEGF inhibitors and MED1 siRNA for treatment of the disorder. PEG and MTC conjugates were synthesized by ion gelation, and equipped with VEGF inhibitor (siV) and MED1 (siD) siRNA (MT/PC/siV-D NPs). The size and morphology of the NPs were detected by TEM. Agarose gel experiment was performed to detect drug encapsulation rate and NPs stability. Zeta potential was assessed by immunofluorescence assay and cell uptake was detected by fluorescence analysis. After cancer cells were treated with NPs or PBS, cell proliferation and invasion were evaluated with VEGF and MED1 expression was detected by Western blot and RT-qPCR analyses. Animal model was conducted to confirm the role of NPs in tumor growth. Results showed that, the MT/PC/siV-D NPs exhibited great stability, drug encapsulation and internalization ability. The combined NPs caused decreased proliferation and invasion of tumor cells, inducing M2 macrophages to re-polarize to M1 type with declined expression of VEGF and MED1. Moreover, the NPs remarkably alleviated breast tumor progression. The multifunctional NPs equipped with EGF inhibitors and MED1 siRNA can inhibit tumor progression by targeting TAMs and cancer cells during breast cancer.


Author(s):  
Suman K. Ray ◽  
Sukhes Mukherjee

: The term Mitophagy has been newly concerned in reforming metabolic landscape inside cancerous cells in addition to interface between malignant cells as well as other major constituents of tumor microenvironment. Several profoundly interrelated systems, comprising mitochondrial dynamics and mitophagy, function in mammalian cells as vital mitochondrial regulator process, and their consequence in neoplastic development has newly illuminated clinically. In specific instance of cancer cells, mitochondrialprotected metabolic paths are revamped to meet expanded bioenergetics along with biosynthetic necessities of malignant cells in addition to deal with oxidative stress. It is an exhausting task to foresee the role that mitophagy has on malignant growth cells since it relies upon various elements like cancer variability, malignant growth phase, genetic background and harmony between cell demand and accessibility. As per condition, mitophagy may have a double role as cancer suppressor for example Atg5 (autophagy related 5) or Atg7 (autophagy related 7) or execute promoter like function for instance FUNDC1 (FUN14 domain-containing protein 1), BNIP3 (BCL2/adenovirus E1B 19-kDa-interacting protein 3), PINK1 (PTEN-instigated kinase 1) etc. Tumor suppressive function of Parkin (E3 ubiquitin ligase) is likewise distinguished in mammary gland carcinoma where obstruction of mitophagy impacts tumor progression. In pancreatic cancer cells and in hepatocellular carcinoma hypermethylation of the BNIP3, promoter occurs that prevent HIF-1 (HypoxiaInducible Factor 1) binding besides ensuing initiation of mitophagy. Since the double role mitophagy has in malignant growth relying upon various circumstances and cell varieties, a range of studies have been going on mitophagy and its role in cancer progression and development is opening up a new paradigm with immense clinical importance.


Sign in / Sign up

Export Citation Format

Share Document