The influence of different doses of α-tocopherol and ascorbic acid on selected oxidative stress parameters in in vitro culture of leukocytes isolated from transported calves

2009 ◽  
Vol 124 (1-3) ◽  
pp. 89-92 ◽  
Author(s):  
R. Urban-Chmiel ◽  
M. Kankofer ◽  
A. Wernicki ◽  
E. Albera ◽  
A. Puchalski
2009 ◽  
Vol 25 (8) ◽  
pp. 545-550 ◽  
Author(s):  
Ismail Karabulut ◽  
Z. Dicle Balkanci ◽  
Bilge Pehlivanoglu ◽  
Aysen Erdem ◽  
Ersin Fadillioglu

Toluene, an organic solvent used widely in the industry, is highly lipophilic and accumulates in the cell membrane impeding transport through it. Its metabolites cause oxygen radical formation that react with unsaturated fatty acids and proteins in erythrocytes leading to lipid peroxidation and protein breakdown. In this study, we aimed to investigate the membrane stabilizing and the oxidative stress—inducing effects of toluene in human erythrocytes. Measurements of osmotic fragility, mean corpuscular volume (MCV), oxidative stress parameters and antioxidant enzyme activities were performed simultaneously both in individuals exposed to toluene professionally (in vivo) and human erythrocytes treated with toluene (in vitro). To measure osmotic fragility, erythrocytes were placed in NaCl solutions at various concentrations (0.1% [blank], 0.38%, 0.40%, 0.42%, 0.44%, 0.46%, 0.48% and 1% [stock]). Percentage of haemolysis in each solution was calculated with respect to the 100% haemolysis in the blank solution. The erythrocyte packs prepared at the day of the above-mentioned measurements were kept at —80°C until the time for determination of malonyldialdehyde and protein carbonyl levels, and catalase (CAT) and glutathione peroxidase activities as indicators of oxidative stress. Toluene increased oxidative stress parameters significantly both in vivo and in vitro; it also caused a significant decrease in the activities of antioxidant enzymes. Osmotic fragility was altered only in the case of in vitro exposure. In conclusion, toluene exposure resulted in increased lipid peroxidation and protein damage both in vivo and in vitro. Although, it is natural to expect increased osmotic fragility due to oxidative properties of toluene, its membrane-stabilizing effect overcame the oxidative properties leading to decreased osmotic fragility or preventing its deterioration in vitro and in vivo toluene exposures, respectively, in the present study.


2019 ◽  
Vol 6 (9) ◽  
pp. 3359-3367 ◽  
Author(s):  
Emmanuel Obasi ◽  
Kizito Iheanacho ◽  
Ngwu Nwachukwu ◽  
Nc Agha ◽  
Paul Chidoka Chikezie

Background: The present study evaluated the effect of phenolic aqueous leaf extract of Vitex doniana on body weight, serum glucose and oxidative stress parameters in diabetes mellitus (DM) rats. Methods: DM was induced in rats by intraperitoneal injection of 100 mg/kg alloxan monohydrate in phosphate buffered saline (PBS; pH = 7.4). A total of 36 adult male Wister albino rats were divided into 6 groups of 6 rats. The groups consist of normal untreated rats, untreated DM rats, DM rats treated with 500 mg/kg dimethylguanide (MetforminTM) and DM rats treated with 100, 200 and 400 mg/kg body weight of phenolic aqueous leaf extract of Vitex doniana. The rats were treated for 28 days. Serum glucose, malondialdehyde (MDA), glutathione (GSH) and ascorbic acid concentrations, and serum superoxide dismutase (SOD) and catalase (CAT) activities were measured using standard methods. The changes in body weight was also measured. Results: The results showed a significant reduction (p < 0.05) in serum glucose and MDA concentration, whereas serum SOD, CAT activities, as well as GSH and ascorbic acid concentration were significantly elevated (p < 0.05) in treated DM groups in a dose dependent manner. Conclusion: The results of the present study indicated that phenolic aqueous leaf extract of V. doniana promoted increased body weight, ameliorated DM and alleviated reduced antioxidant activities in alloxan-induced DM rats. Phenolic aqueous leaf extract of V. doniana could serve as a potential natural and safe remedy for the management of DM.  


PLoS ONE ◽  
2011 ◽  
Vol 6 (11) ◽  
pp. e27452 ◽  
Author(s):  
Barbara Ambruosi ◽  
Manuel Filioli Uranio ◽  
Anna Maria Sardanelli ◽  
Paola Pocar ◽  
Nicola Antonio Martino ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Clarice Noussi Djouwoug ◽  
Florence Tsofack Ngueguim ◽  
Raceline Kamkumo Gounoue ◽  
Clémence Donfack Gouni ◽  
Antoine Kavaye Kandeda ◽  
...  

Bridelia atroviridis Müll. Arg. (B. atroviridis) is a plant used in Cameroonian traditional medicine to manage diabetes. The effects of hydroethanolic barks extract from B. atroviridis were evaluated on diabetes disorders including hematology, inflammatory, and oxidative stress parameters. The in vitro antioxidant capacity of the hydroethanolic bark extract (70 : 30) was evaluated. Nicotinamide-/streptozotocin-induced diabetic rats were daily treated with the B. atroviridis extract for fifteen days. Glycemia were evaluated every 5 days, insulin sensibility test was performed, and haematological, inflammatory, and oxidative stress parameters were analysed. Histomorphometry of the pancreas was realized. The extract was able to scavenge free radicals in vitro and decrease significantly the blood glucose levels. The treatment resulted in a significant alleviation of insulin resistance, anemia, leukocytopenia, and thrombocytopenia observed in untreated diabetic rats. The extract significantly decreased proinflammatory cytokines TNF-α, IL-1β, and IL-10. The rate of reduced glutathione was increased in the pancreas, whereas the catalase activity and nitrite concentration were decreased. Diabetic control showed a reduced size of Langerhans islet, whereas the size of islets was large in treated groups. The hydroethanolic extract of B. atroviridis was able to improve glycemia and alleviate haematological and inflammatory parameters disorders observed in diabetic conditions, probably due to its antidiabetic, anti-inflammatory, and antioxidant capacities.


2008 ◽  
Vol 23 (4) ◽  
pp. 411-425 ◽  
Author(s):  
Ana Paula Beskow ◽  
Carolina Gonçalves Fernandes ◽  
Guilhian Leipnitz ◽  
Lucila de Bortoli da Silva ◽  
Bianca Seminotti ◽  
...  

2021 ◽  
Vol 14 (11) ◽  
pp. 1149
Author(s):  
Federica Sodano ◽  
Bice Avallone ◽  
Monica Tizzano ◽  
Chiara Fogliano ◽  
Barbara Rolando ◽  
...  

In our previous studies, a ketorolac–galactose conjugate (ketogal) showed prolonged anti-inflammatory and analgesic activity, causing less gastric ulcerogenic effect and renal toxicity than its parent drug ketorolac. In order to demonstrate the safer profile of ketogal compared to ketorolac, histopathological changes in the small intestine and liver using three staining techniques before and after repeated oral administration in mice with ketorolac or an equimolecular dose of its galactosylated prodrug ketogal were assessed. Cytotoxicity and oxidative stress parameters were evaluated and compared in ketorolac- and ketogal-treated Human Primary Colonic Epithelial cells at different concentrations and incubation times. Evidence of mitochondrial oxidative stress was found after ketorolac treatment; this was attributable to altered mitochondrial membrane depolarization and oxidative stress parameters. No mitochondrial damage was observed after ketogal treatment. In ketorolac-treated mice, severe subepithelial vacuolation and erosion with inflammatory infiltrates and edematous area in the intestinal tissues were noted, as well as alterations in sinusoidal spaces and hepatocytes with foamy cytoplasm. In contrast, treatment with ketogal provided a significant improvement in the morphology of both organs. The prodrug clearly demonstrated a safer profile than its parent drug both in vitro and ex vivo, confirming that ketogal is a strategic alternative to ketorolac.


Sign in / Sign up

Export Citation Format

Share Document