Current practices and knowledge supporting oil spill risk assessment in the Arctic

2018 ◽  
Vol 141 ◽  
pp. 289-304 ◽  
Author(s):  
Richard J. Wenning ◽  
Hilary Robinson ◽  
Michael Bock ◽  
Mary Ann Rempel-Hester ◽  
William Gardiner
Author(s):  
A. Dinovitzer ◽  
G. Comfort ◽  
R. Lazor ◽  
D. Hinnah

While offshore arctic pipelines have been under consideration for more than 25 years, few have been built. Renewed interest in offshore arctic oil and gas has necessitated the design of pipelines capable of both overcoming the technical challenges of the arctic offshore environment and minimizing the risk to it. This paper describes a quantitative risk assessment completed by BMT Fleet Technology Limited on the risk of an oil spill for several design alternatives of the proposed Liberty Pipeline that would be used to transport oil onshore from a production site in the Alaskan Beaufort Sea. For the purposes of the study, risk was defined as the volume of oil expected to be released over the planned pipeline 20-year life. The investigation considered the risks associated with ice gouging, strudel scour, permafrost thaw subsidence, operational failures, corrosion, third party activities and thermal loads leading to upheaval buckling. Event probabilities for these hazards were established through the development of event trees used to combine historic operational failure statistics and those estimated through engineering analysis. A pipeline leakage consequence model was developed to quantify the oil volume released during pipeline failure events associated with rupture, through-wall cracking and pinhole leaks. The model considered secondary containment and the expected performance of leak detection and monitoring systems. The time to leak detection, shut down, and line evacuation were used in estimating the total spill volumes. The paper provides an overview of primary elements of the risk assessment including the hazard identification, reliability analysis and consequence modeling, and describes the challenges involved in this comparative risk analysis completed for this unique environment.


Author(s):  
A.A. Gorbunov ◽  
◽  
S.I. Shepelyuk ◽  
A.G. Nesterenko ◽  
K.I. Drapey ◽  
...  

Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Author(s):  
Alexander Krivichev ◽  
Alexander Krivichev

Russian Arctic shelf - rich larder of the hydrocarbons, at the same time Northern Sea Route (NSR) - a strategically important route for transporting them. The extraction and the transportation of the hydrocarbons along the NSR requires the solution of a number of ecological and economic problems in the first place to ensure environmental and technogenic safety. For the solving of these problems on the continental shelf it is required a system of comprehensive measures: - the development of the regulatory framework for environmental support oil and gas projects; - the introduction and use of integrated methods for monitoring environmental conditions at the sites of technogenic loads on the shelf of the Arctic seas, including the use of drones; - creating different models for assessing the marginal stability of ecosystems to technogenic loads during production and transportation of hydrocarbons on the continental shelf based on systems of dynamic simulations; - the development and use of sensitivity maps of coastal areas of the Arctic seas during oil spill response; - accounting of the results of the analysis of the total environmental benefit in the development of oil spill response plans; - application of the principle of "zero" resetting, due to the high fishery valuation in Barents and Kara seas and the conservation of marine biological resources.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 575-586
Author(s):  
Pepijn De Vries ◽  
Jacqueline Tamis ◽  
Jasmine Nahrgang ◽  
Marianne Frantzen ◽  
Robbert Jak ◽  
...  

AbstractIn order to assess the potential impact from oil spills and decide the optimal response actions, prediction of population level effects of key resources is crucial. These assessments are usually based on acute toxicity data combined with precautionary assumptions because chronic data are often lacking. To better understand the consequences of applying precautionary approaches, two approaches for assessing population level effects on the Arctic keystone species polar cod (Boreogadus saida) were compared: a precautionary approach, where all exposed individuals die when exposed above a defined threshold concentration, and a refined (full-dose-response) approach. A matrix model was used to assess the population recovery duration of scenarios with various but constant exposure concentrations, durations and temperatures. The difference between the two approaches was largest for exposures with relatively low concentrations and short durations. Here, the recovery duration for the refined approach was less than eight times that found for the precautionary approach. Quantifying these differences helps to understand the consequences of precautionary assumptions applied to environmental risk assessment used in oil spill response decision making and it can feed into the discussion about the need for more chronic toxicity testing. An elasticity analysis of our model identified embryo and larval survival as crucial processes in the life cycle of polar cod and the impact assessment of oil spills on its population.


2021 ◽  
Vol 213 ◽  
pp. 106676
Author(s):  
Saeed Mohammadiun ◽  
Guangji Hu ◽  
Abdorreza Alavi Gharahbagh ◽  
Reza Mirshahi ◽  
Jianbing Li ◽  
...  

2019 ◽  
Vol 25 ◽  
pp. 5-19
Author(s):  
María J. Gunnarsdóttir ◽  
Sigurður Magnús Garðarsson ◽  
Hrund Ólöf Andradóttir ◽  
Alfreð Schiöth

Climate change is expected to have impact on water supply and drinking water quality in Iceland. Foremost there are three influential weather-related factors; increase in temperature; rise in sea level; and seasonal and regional change in precipitation in both quantity and intensity. In this study international and local reports and articles were analyzed for expected impact on the water resource with emphasis on the northern and the arctic region. Water quality risk factors were analyzed based on surveillance data of the water supplies from the Local Competent Authorities. Preliminary risk assessment of landslides and flooding was performed in one surveillance area in northern Iceland.


2011 ◽  
pp. 521-536 ◽  
Author(s):  
Gro Harlaug Olsen ◽  
JoLynn Carroll ◽  
Salve Dahle ◽  
Lars-Henrik Larsen ◽  
Lionel Camus
Keyword(s):  

Author(s):  
M Naseri ◽  
Abbas Barabadi ◽  
Javad Barabady ◽  
G Voskoboynikov

Sign in / Sign up

Export Citation Format

Share Document