scholarly journals Phosphorus/sulfur-containing aliphatic polyamide curing agent endowing epoxy resin with well-balanced flame safety, transparency and refractive index

2020 ◽  
Vol 187 ◽  
pp. 108417 ◽  
Author(s):  
Zhu-Bao Shao ◽  
Zuo-Cheng Tang ◽  
Xiao-Zhang Lin ◽  
Jing Jin ◽  
Zhen-Yu Li ◽  
...  
2009 ◽  
Vol 114 (5) ◽  
pp. 2706-2710 ◽  
Author(s):  
Y. Yang ◽  
Gong Chen ◽  
K. M. Liew
Keyword(s):  

2021 ◽  
Vol 24 (1) ◽  
pp. 63-72
Author(s):  
Rui Li ◽  
Guoxing Yang ◽  
Yudan Wang ◽  
Lijia Liu ◽  
Qiang Wang ◽  
...  
Keyword(s):  

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 245
Author(s):  
Yong Sun ◽  
Yongli Peng ◽  
Yajiao Zhang

In this work, a flame retardant curing agent (DOPO-MAC) composed of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide DOPO and methyl acrylamide (MAC) was synthesized successfully, and the structure of the compound was characterized by FT-IR and 1H-NMR. The non-isothermal kinetics of the epoxy resin/DOPO-MAC system with 1% phosphorus was studied by non-isothermal DSC method. The activation energy of the reaction (Ea), about 46 kJ/mol, was calculated by Kissinger and Ozawa method, indicating that the curing reaction was easy to carry out. The flame retardancy of the epoxy resin system was analyzed by vertical combustion test (UL94) and limiting oxygen index (LOI) test. The results showed that epoxy resin (EP) with 1% phosphorus successfully passed a UL-94 V-0 rating, and the LOI value increased along with the increasing of phosphorus content. It confirmed that DOPO-MAC possessed excellent flame retardance and higher curing reactivity. Moreover, the thermal stability of EP materials was also investigated by TGA. With the DOPO-MAC added, the residual mass of EP materials increased remarkably although the initial decomposition temperature decreased slightly.


2009 ◽  
Vol 6 (2) ◽  
pp. 399-411 ◽  
Author(s):  
G. S. Jha ◽  
P. Chhabra ◽  
G. Suri ◽  
M. Tyagi ◽  
P. Arora ◽  
...  

Sulfur and chlorine containing bifunctional diols with C-S bond has been prepared starting from chloroepoxy alkane and thioalcohol. The studies of FTIR, TLC, HPLC and NMR have been used to understand the reaction mechanism, as well as for optimization of the reaction parameters. The reaction is highly exothermic and the effect of temperature, rate of addition of reagents and reaction time are important factors affecting the formation of diol. Viscosity studies, HPLC, FTIR, NMR and acid number studies have shown that, these parameters could be used as process control parameters for the synthesis of diol. Refractive index of the synthesized diol is found to be higher than that of the reactants used.


2020 ◽  
Vol 29 (5) ◽  
pp. 433-443 ◽  
Author(s):  
Ajinkya Satdive ◽  
Siddhesh Mestry ◽  
Pavan Borse ◽  
Shashank Mhaske
Keyword(s):  

e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 545-554 ◽  
Author(s):  
Anxin Li ◽  
Pingli Mao ◽  
Bing Liang

AbstractIn order to improve the compatibility of flame retardant and epoxy resin, a phosphorus nitrogen flame retardant curing agent poly(p-xylylenediamine spirocyclic pentaerythritol bisphosphonate) (PPXSPB) was synthesized. FTIR, 1HNMR, and mass spectroscopy were used to identify the chemical structure of PPXSPB. Epoxy resin (E-44) and PPXSPB as the raw material, a series of thermosetting systems were prepared. The effects of PPXSPB on flame retardancy, water resistance, thermal degradation behavior, mechanical properties and the adhesive strength of EP/PPXSPB thermosets were investigated. The results show that with the increase of phosphorus content, the oxygen index and carbon residue of the system both increased significantly, and the heat release rate gradually decreased, which is of great significance in delaying the occurrence of fire. When the phosphorus content is 3.24% in EP/PPXSPB thermosets, EP-2 can successfully pass the UL94 V-0 flammability rating, the LOI value of EP-2 can reach 31.4%, the impact strength and tensile strength was 6.58 kJ/m2 and 47.10 MPa respectively, and the adhesive strength was 13.79 MPa, the system presents a good overall performance.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4273-4278
Author(s):  
CHEOL-WOONG KIM ◽  
DONG-JOON OH

The interlaminar peel strength of Al / AFRP (Aluminum alloy/Aramid Fiber Reinforced Plastic) hybrid composite is affected by the adhesive strength between the Al alloy layer and the aramid fiber layer. The study of the tensile strength and the T-peel strength of the Al / AFRP should be accomplished first. Therefore, this study focused on the effect of the resin mixture ratio as the Al / AFRP on the tensile strength and T-peel strength. In conclusions, the resin mixture ratio by equivalence ratio of 〈epoxy resin : curing agent〉 equal to 〈1:1〉 of Al / AFRP -I and the resin mixture ratio by equivalence ratio of 〈epoxy resin : curing agent : accelerator〉 equal to 〈1:1:0.2〉 of Al / AFRP -II showed the highest ultimate tensile strength. After the T-peel test, it is found that the T-peel strength of Al / AFRP -II is approximately 1.5 times higher than that of Al / AFRP -I. Reviewing the characteristics of the tensile and T-peel strengths, the resin mixture ratio 〈1:1:0.2〉 of Al / AFRP -II showed the highest tensile strength and T-peel strength.


Sign in / Sign up

Export Citation Format

Share Document