HIGH TECHNIQUE FOR T-PEEL STRENGTH ENHANCEMENT OF Al/AFRP HYBRID COMPOSITE

2006 ◽  
Vol 20 (25n27) ◽  
pp. 4273-4278
Author(s):  
CHEOL-WOONG KIM ◽  
DONG-JOON OH

The interlaminar peel strength of Al / AFRP (Aluminum alloy/Aramid Fiber Reinforced Plastic) hybrid composite is affected by the adhesive strength between the Al alloy layer and the aramid fiber layer. The study of the tensile strength and the T-peel strength of the Al / AFRP should be accomplished first. Therefore, this study focused on the effect of the resin mixture ratio as the Al / AFRP on the tensile strength and T-peel strength. In conclusions, the resin mixture ratio by equivalence ratio of 〈epoxy resin : curing agent〉 equal to 〈1:1〉 of Al / AFRP -I and the resin mixture ratio by equivalence ratio of 〈epoxy resin : curing agent : accelerator〉 equal to 〈1:1:0.2〉 of Al / AFRP -II showed the highest ultimate tensile strength. After the T-peel test, it is found that the T-peel strength of Al / AFRP -II is approximately 1.5 times higher than that of Al / AFRP -I. Reviewing the characteristics of the tensile and T-peel strengths, the resin mixture ratio 〈1:1:0.2〉 of Al / AFRP -II showed the highest tensile strength and T-peel strength.

2013 ◽  
Vol 401-403 ◽  
pp. 713-716
Author(s):  
Cheng Fang ◽  
Dong Bo Guan ◽  
Wei Guo Yao ◽  
Shou Jun Wang ◽  
Hui An

The epoxy resin was modified with the mixture of α,ω-dihydroxy poly-(3,3,3-trifluoropropyl) siloxane (PTFPMS), KH560 and stannous octoate. KH560 can react with PTFPMS and also epoxy resin curing agent. The two reactions were characterized by FI-IR. The modified epoxy resin was characterized by FI-IR. The result showed that fluorine-containing silicone had been successfully introduced into the epoxy system. The mechanical and thermal properties of the modified epoxy resin were analyzed. The results showed that with the increase of PTFPMS the impact strength of epoxy resin increased, hardness and bending strength correspondingly reduced, slight decrease in the glass transition temperature.


2013 ◽  
Vol 690-693 ◽  
pp. 1649-1652
Author(s):  
Ai Jie Ma ◽  
Qiu Yu Zhang ◽  
You Qiang Shi

In this paper, 2-phenyl imidazole (2-PZ) microcapsule-type curing agent of epoxy resin were prepared through solvent volatilization with 2-PZ and polymethyl acrylic glycidyl ester (PGMA) as the raw materials. The micro-morphology, shape and structure of the microcapsules were studied by scanning electronic microscope (SEM) and fourier transform infrared spectrum (FT-IR). The curing kinetics of microcapsule curing agent/epoxy resin E-44 curing system were studied using TGA/DSC simultaneous thermal analyzer. Results showed that the preparation method is simple and effective and the prepared 2-PZ microcapsules have smooth surfaces and monodisperse size. And the curing kinetic study of epoxy resin system suggested epoxy resin curing temperature was rising with the increase of heating rate.


2009 ◽  
Vol 3 (2) ◽  
pp. 111-115
Author(s):  
Jason Bragg ◽  
◽  
Alberto Alvarez-Castillo ◽  
Monica Trejo-Duran ◽  
Victor Castano ◽  
...  

A series of polymer alloys based on different compositions of Nylon 6,6 oligomers (NYL66Oґs) and epoxy resin have been prepared. The oligomer was extracted from the waste residues of the industrial production of nylon 6,6 and was dissolved in the epoxy resin. The mixture was crosslinked at 333 K using dodecenylsuccinic anhydre (DDSA) as a curing agent. The tensile strength and flexural modulus were found to increase with the addition of NYLO66O up to a maximum value of 2 wt % oligomer content. Both, the tensile and impact strength show a maximum increase due to the addition of 35 wt % NYLO66O. The compressive strength testing revealed a considerable increase, up to 87 %, over that of the neat epoxy with the addition of 1 wt % NYLO66O. An interesting relationship between the mechanical properties and the developed morphology of the blends has been found.


2016 ◽  
Vol 45 (5) ◽  
pp. 308-312 ◽  
Author(s):  
Wei Li ◽  
Guilong Xu ◽  
Buqin Xu ◽  
Yi Wang ◽  
Jin Yang ◽  
...  

Purpose The flammability of epoxy resin is a major disadvantage in applications that require flame resistance. Epoxy monomers and hardeners containing flame-retardant elements are molecularly incorporated in the resin network are expected to exhibit better flame resistance than those borne on an additive approach. In recent years, because of health and environmental regulation, the use of waterborne coatings has received many attentions. However, waterborne epoxy resin curing agent with excellent flame retardancy has been seldom reported. The paper aims to study the preparation of waterborne P-N-containing epoxy resin curing agent and its performances (P-N – phosphorous and nitrogen). Design/methodology/approach Waterborne P-N-containing epoxy curing agent was prepared in this study using reactive flame retardant 10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-xa-10-phosphaphenanthrene-10-oxide, liquid epoxy resin, triethylenetetramine and butyl glycidyl ether at the mole ratio of 1.0:2.0:2.0:2.0. Findings The results show that the epoxy thermoset from the prepared P-N-containing curing agent presents good flame retardancy and can pass the V-1 rating, and the cured epoxy thermoset film presents excellent performances such as water resistance, adhesion, impact resistance and pencil hardness. This study provides useful suggestions for the application of the water-borne flame retardancy epoxy resins in coating industry. Research limitations/implications Each step of products during the preparation of waterborne P-N-containing epoxy curing agent cannot be accurately tested. Originality/value This method for synthesis of waterborne P-N-containing epoxy curing agent is novel and could be used for various applications in epoxy coating industry.


2012 ◽  
Vol 535-537 ◽  
pp. 2499-2502
Author(s):  
X. Wang ◽  
S. R. Zheng ◽  
R. M. Wang

Epoxy resin structural adhesives modified by flexible curing agent. Dependening on the mechanical properties of epoxy resins on the flexible curing agent content was studied. The impact fracture toughness was discussed in terms of fracture surface fractography.


2007 ◽  
Vol 29-30 ◽  
pp. 319-322 ◽  
Author(s):  
M.S. Islam ◽  
K.L. Pickering

Industrial hemp fibre was treated with alkali and the influence of this treatment on interfacial shear strength (assessed using the single fibre pull-out test) and composite strength with an epoxy resin, over a range of epoxy resin to curing agent ratios, was investigated. Scanning electron microscopy was conducted to assess the fracture behaviour of the composite tensile test specimens. It was found that alkali treatment increased the interfacial shear strength and composite tensile strength, Young’s modulus and elongation at break. The highest tensile strength was obtained with an epoxy resin to curing agent ratio of 1:1 while the best Young’s modulus was achieved with a resin to curing agent ratio of 1:1.2.


2020 ◽  
Vol 853 ◽  
pp. 171-176
Author(s):  
Shuo Zhang ◽  
Chun Lin Liu ◽  
Wen Zhu ◽  
Meng Xiong Tang ◽  
He Song Hu ◽  
...  

A series of tests were conducted to investigate the mechanical performances of aramid fiber reinforced polymer (AFRP) and its epoxy resin matrix after 0, 20, 40, 60 and 80 freeze-thaw cycles in the dry air, respectively. After a given number of freeze-thaw cycles, the residual tensile strength and elastic modulus of AFRP specimens were measured, and the lap-shear strength of epoxy resin adhesive specimens was gained. Test results show that: (1) Variation of the elastic modulus of AFRP with the increasing of the freeze-thaw cycles exhibits the same tendency as the tensile strength did. They increase in the first 20 to 40 cycles and then decrease till the end of 80 cycles; (2) The tensile strength and elastic modulus of AFRP decreases by 5.1% and 8.2%, respectively, after 80 cycles as compared with that kept in the laboratory environments. However, the effect of the freeze-thaw cycling in the dry air on the tensile properties of CFRP is very limited within 80 cycles; (3) The freeze-thaw cycling in the dry air of this study has an adverse effect on the adhesive property of the epoxy resin, which could be regarded as the evidence for the degradation of the interface between aramid/carbon fiber and matrix.


2016 ◽  
Vol 37 (4) ◽  
pp. 1092-1098 ◽  
Author(s):  
Kai Hu ◽  
Lixia Bao ◽  
Xiaofeng Chen ◽  
Yao Xiao ◽  
Jingxin Lei

Sign in / Sign up

Export Citation Format

Share Document