scholarly journals An in situ and ex situ study of χ phase formation in a hypoeutectic Fe-based hardfacing alloy

2020 ◽  
Vol 188 ◽  
pp. 108438 ◽  
Author(s):  
K. Wieczerzak ◽  
J. Michler ◽  
J.M. Wheeler ◽  
S. Lech ◽  
R. Chulist ◽  
...  
2004 ◽  
Vol 185 (2-3) ◽  
pp. 329-339 ◽  
Author(s):  
Z.B Zhao ◽  
Z.U Rek ◽  
S.M Yalisove ◽  
J.C Bilello

1993 ◽  
Vol 303 ◽  
Author(s):  
Ramanath Ganapathiraman ◽  
S. Koh ◽  
Z. Ma ◽  
L. H. Allen ◽  
S. Lee

ABSTRACTIn VLSI technology, there is interest in monitoring the sequence of phase formation of TiSi2 (c-Ti ⇒ a-TiSi ⇒ C49 TiSi2 ⇒ C54 TiSi2), with the prospect of reducing the temperature of formation of the stable C54 TiSi2 phase. In this study, phase formation characteristics of TiSi2 during rapid thermal annealing(RTA) of Ti-Si bilayers are investigated by means of in situ four point probe resistance measurements. Ex situ X-ray diffraction(XRD) was used for phase identification and characterization. Results indicate that the same multi-step sequence of transformations precede the formation of the C54 TiSi2 phase for heating rates from 1°C/s to 100°C/s. Also, all intermediate and metastable phases which occur at l°C/s also occur at 100°C/s. Temperature dependence and kinetics of the C49 TiSi2 and the C54 TiSi2 phase formation were studied over a wide range of heating rates. Activation energies estimated for the two processes were ∼2eV and ∼5eV respectively. Finally, a new Electrical Thermal Annealing(ETA) technique for heating at rates up to 30000°C/s is introduced. Preliminary in situ resistivity measurement results of TiSi2 formation at these high heating rates are also presented.


2001 ◽  
Vol 689 ◽  
Author(s):  
W. Wong-Ng ◽  
L. P. Cook ◽  
J. Suh ◽  
I. Levin ◽  
M. Vaudin ◽  
...  

ABSTRACTThe interplay of melting equilibria and reaction kinetics is important during formation of the Ba2YCu3O6+x (Y-213) phase from starting materials in the quaternary reciprocal system Ba,Y,Cu//O,F. For experimental investigation of the process we used a combination of differential thermal analysis (DTA) for study of melting equilibria, and in-situ high-temperature x-ray diffraction (HTXRD) for study of the phase formation and reaction kinetics. DTA investigation of compositions spaced along compositional vectors extending from the oxide end to the fluoride end of the reciprocal system have given evidence of low melting liquids (∼600 °C) near the fluorine-rich end. Work is continuing to determine whether similar thermal events observed in the interior of the system also indicate low temperature liquids, and on the extent to which low-melting liquids could be involved in Y-213 phase formation. HTXRD investigations have been initiated on the conversion of 0.3 μm and 1.0 μm thick BaF2-Y-Cu precursor films to Y-213 in the presence of water vapor. Preliminary results indicated that the thickness of film has a strong influence on the texture of the Y-213 film: a 0.3 μm film showed mainly (001) texture, whereas a 1.0 μm film showed a greater volume fraction of (h00) texture. While the HTXRD method cannot directly reveal the presence of liquid, we are working to combine DTA and HTXRD data for a unified picture of Y-213 phase formation during the “BaF2 ex-situ” process for coated-conductor fabrication.


2007 ◽  
Vol 264 ◽  
pp. 71-78 ◽  
Author(s):  
U. Welzel ◽  
Eric J. Mittemeijer

After a brief discussion of possible mechanisms of stress generation in thin film diffusion/reaction couples, two recent experimental examples are reviewed: (i) Thin film diffusion couples (Pd-Cu, individual layer thicknesses: 50nm) prepared by DC-magnetron sputtering on silicon substrates. The microstructural development, phase formation and the stress evolution during diffusion annealing have been investigated employing Auger-electron spectroscopy in combination with sputter depth profiling, transmission electron microscopy, in-situ wafer-curvature measurements and ex-situ and, in particular, in-situ X-ray diffraction measurements. (ii) Tin layers on copper substrates (layer thicknesses of some microns) prepared by electrodeposition. Upon storage at ambient temperatures, Cu diffuses into the Sn layer and forms the intermetallic phase η’- Cu6Sn5. The phase formation is accompanied by a volume expansion and as a consequence, compressive residual stresses can be generated in the Sn layers. These compressive residual stresses may drive the formation of Sn whiskers on the Sn surface. The microstructural development, phase formation and the stress evolution during diffusion annealing have been investigated employing scanning electron and focused ion beam microscopy, metallography and ex-situ and, in particular, in-situ X-ray diffraction measurements.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
K. Barmak

Generally, processing of thin films involves several annealing steps in addition to the deposition step. During the annealing steps, diffusion, transformations and reactions take place. In this paper, examples of the use of TEM and AEM for ex situ and in situ studies of reactions and phase transformations in thin films will be presented.The ex situ studies were carried out on Nb/Al multilayer thin films annealed to different stages of reaction. Figure 1 shows a multilayer with dNb = 383 and dAl = 117 nm annealed at 750°C for 4 hours. As can be seen in the micrograph, there are four phases, Nb/Nb3-xAl/Nb2-xAl/NbAl3, present in the film at this stage of the reaction. The composition of each of the four regions marked 1-4 was obtained by EDX analysis. The absolute concentration in each region could not be determined due to the lack of thickness and geometry parameters that were required to make the necessary absorption and fluorescence corrections.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


Author(s):  
Hyoung H. Kang ◽  
Michael A. Gribelyuk ◽  
Oliver D. Patterson ◽  
Steven B. Herschbein ◽  
Corey Senowitz

Abstract Cross-sectional style transmission electron microscopy (TEM) sample preparation techniques by DualBeam (SEM/FIB) systems are widely used in both laboratory and manufacturing lines with either in-situ or ex-situ lift out methods. By contrast, however, the plan view TEM sample has only been prepared in the laboratory environment, and only after breaking the wafer. This paper introduces a novel methodology for in-line, plan view TEM sample preparation at the 300mm wafer level that does not require breaking the wafer. It also presents the benefit of the technique on electrically short defects. The methodology of thin lamella TEM sample preparation for plan view work in two different tool configurations is also presented. The detailed procedure of thin lamella sample preparation is also described. In-line, full wafer plan view (S)TEM provides a quick turn around solution for defect analysis in the manufacturing line.


Sign in / Sign up

Export Citation Format

Share Document