Formation of TiSi2 During Rapid Thermal Annealing: In Situ Resistance Measurements at Heating Rates From 1°C/S to 100°C/S.

1993 ◽  
Vol 303 ◽  
Author(s):  
Ramanath Ganapathiraman ◽  
S. Koh ◽  
Z. Ma ◽  
L. H. Allen ◽  
S. Lee

ABSTRACTIn VLSI technology, there is interest in monitoring the sequence of phase formation of TiSi2 (c-Ti ⇒ a-TiSi ⇒ C49 TiSi2 ⇒ C54 TiSi2), with the prospect of reducing the temperature of formation of the stable C54 TiSi2 phase. In this study, phase formation characteristics of TiSi2 during rapid thermal annealing(RTA) of Ti-Si bilayers are investigated by means of in situ four point probe resistance measurements. Ex situ X-ray diffraction(XRD) was used for phase identification and characterization. Results indicate that the same multi-step sequence of transformations precede the formation of the C54 TiSi2 phase for heating rates from 1°C/s to 100°C/s. Also, all intermediate and metastable phases which occur at l°C/s also occur at 100°C/s. Temperature dependence and kinetics of the C49 TiSi2 and the C54 TiSi2 phase formation were studied over a wide range of heating rates. Activation energies estimated for the two processes were ∼2eV and ∼5eV respectively. Finally, a new Electrical Thermal Annealing(ETA) technique for heating at rates up to 30000°C/s is introduced. Preliminary in situ resistivity measurement results of TiSi2 formation at these high heating rates are also presented.

1995 ◽  
Vol 387 ◽  
Author(s):  
E. G. Colgan ◽  
C. Cabral ◽  
L. A. Clevenger ◽  
J. M. E. Harper

AbstractMeasurement of resistance in-situ during rapid thermal annealing is a powerful technique for process characterization and optimization. A major advantage of in-situ resistance measurements is the very rapid process learning. With silicides, in-situ resistance measurements can quickly determine an appropriate thermal process in which a low resistance silicide phase is formed without the agglomeration or inversion of silicide/polycrystalline silicon structures. One example is an optimized two step anneal for CoSi2 formation which was developed in less than one day. Examples of process characterization include determining the phase formation kinetics of TiSi2 (C49 and C54), Co2Si, and CoSi2 using in-situ ramped resistance measurements. The stability of TiSi2 or CoSi2/poly-Si structures has also been characterized by isothermal measurements. Resistance measurements have been made at heating rates from 1 to 100°C/s and temperatures up to 1000°C. The sample temperature was calibrated by melting Ag, Al, or Au/Si eutectics.


1996 ◽  
Vol 441 ◽  
Author(s):  
C. Cabral ◽  
L. A. Clevenger ◽  
J. M. E. Harper ◽  
R. A. Roy ◽  
K. L. Saenger ◽  
...  

AbstractWe demonstrate that the addition of a molybdenum interlayer between titanium and silicon enhances the formation of C54 TiSi2, without bypassing the formation of the C49 TiSi2 phase. In situ x-ray diffraction analysis during rapid thermal annealing, at a rate of 3 °C/s, was used to study the phase formation sequence of TiSi2 starting from a blanket bilayer of Ti on Mo on a polycrystalline Si substrate. It was shown, as in the case without the Mo layer, that the C49 TiSi2 phase forms first, followed by the C54 TiSi2 phase. The results were similar for undoped or arsenic, boron, and phosphorous doped polycrystalline silicon substrates. The temperature range over which the C49 phase is stable is reduced, on average, by 80 °C. The lower end of the range (appearance of C49) is increased by approximately 60 °C and the upper end of the range (disappearance of C49) is decreased by about 20 0C. The orientation of the C49 phase differs in that both the C49(131) and C49(060) orientations are observed, compared to the case without the Mo layer where only the C49(131) orientation is observed.


1995 ◽  
Vol 10 (8) ◽  
pp. 1953-1957 ◽  
Author(s):  
E.G. Colgan

The activation energies, Ea's, for Pt2Si and PtSi formation were determined using in situ resistance measurements with ramp rates ranging from 0.4 °C/m to 100 °C/s. Measurements were performed using both conventional furnace and rapid thermal annealing (RTA). Pt films were evaporated on undoped polycrystalline Si and single-crystal Si on sapphire substrates. The Ea's determined from Kissinger plots were 1.63 ± 0.05 and 1.61 ± 0.06 eV for Pt2Si formation and 1.83 ± 0.06 and 1.83 ± 0.07 eV for PtSi formation with polycrystalline Si and silicon on sapphire substrates, respectively. These are the first reported measurements of Ea's for Pt2Si and PtSi formation over such a wide range of heating rates (greater than four orders of magnitude) and at such high heating rates. The phase formation sequence remained the same for the range of heating rates examined.


1995 ◽  
Vol 389 ◽  
Author(s):  
E.G. Colgan ◽  
C. Cabral ◽  
L.A. Clevenger ◽  
J.M.E. Harper

ABSTRACTMeasurement of resistance in-situ during rapid thermal annealing is a powerful technique for process characterization and optimization. A major advantage of in-situ resistance measurements is the very rapid process learning. With silicides, in-situ resistance measurements can quickly determine an appropriate thermal process in which a low resistance silicide phase is formed without the agglomeration or inversion of silicide/polycrystalline silicon structures. One example is an optimized two step anneal for CoSi2 formation which was developed in less than one clay. Examples of process characterization include determining the phase formation kinetics of TiSi2 (C49 and C54), Co2Si, and CoSi2 using in-situ ramped resistance measurements. The stability of TiSi2 or CoSi2/poly-Si structures has also been characterized by isothermal measurements. Resistance measurements have been made at heating rates from 1 to 100°C/s and temperatures up to 1000°C. The sample temperature was calibrated by melting Ag, Al, or Au/Si eutectics.


1994 ◽  
Vol 375 ◽  
Author(s):  
C. Cabral ◽  
L. A. Clevenger ◽  
G. B. Stephenson ◽  
S. Brauer ◽  
G. Morales ◽  
...  

AbstractIt has been demonstrated, using synchrotron radiation, that at rapid thermal annealing rates (3°C/s) the formation of CoSi2 shifts to higher temperatures when a thin Ti interlayer is placed between Co and polycrystalline Si. It has also been shown that the Ti interlayer reduces the temperature range between the start of CoSi formation and CoSi2 formation (i.e. the range over which CoSi is present). 13 nm of Co deposited by physical vapor deposition on polycrystalline Si with and without either a 2 nm or 3.4 nm interlayer of Ti was analyzed in-situ by monitoring x-ray diffraction (XRD) peak intensity as a function of temperature using monochromatic radiation from a synchrotron beam line and by monitoring resistivity as a function of temperature in a rapid thermal annealing (RTA) system. The XRD analysis indicates that the phase formation proceeds from CoSi to CoSi2 in a temperature range that decreases from about 200°C to 140°C to 115°C with pure Co, Co/2 nm Ti and Co/3.4 nm Ti films respectively. The onset of the CoSi formation increases by about 135°C and 160° for Co/ 2 nm Ti and Co/3.4 nm Ti compared to pure Co. The CoSi temperature range decreases from about 75°C in pure Co to less than 50°C in Co/Ti. In-situ RTA resistance along with in-situ XRD analysis indicates that the onset formation temperatures for CoSi are about 440°C, 575°C and 600°C and the temperatures for the completion of CoSi2 formation are about 640°C, 715°C and 715°C for Co, Co / 2 nm Ti and Co / 3.4 nm Ti films respectively. The results are consistent with the Ti interlayer acting as a diffusion barrier during the initial stages of the Co-Si reaction.


2007 ◽  
Vol 1027 ◽  
Author(s):  
Do Young Noh ◽  
Ki-Hyun Ryu ◽  
Hyon Chol Kang

AbstractThe transformation of Au thin films grown on sapphire (0001) substrates into nano crystals during thermal annealing was investigated by in situ synchrotron x-ray scattering and ex situ atomic force microscopy (AFM). By monitoring the Au(111) Bragg reflection and the low Q reflectivity and comparing them with ex situ AFM images, we found that polygonal-shape holes were nucleated and grow initially. As the holes grow larger and contact each other, their boundary turns into Au nano crystals. The Au nano crystals have a well-defined (111) flat top surface and facets in the in-plane direction.


2011 ◽  
Vol 37 (2) ◽  
pp. 112-115 ◽  
Author(s):  
V. I. Rudakov ◽  
Yu. I. Denisenko ◽  
V. V. Naumov ◽  
S. G. Simakin

1999 ◽  
Vol 590 ◽  
Author(s):  
DM Pickup ◽  
G Mountjoy ◽  
RJ Newport ◽  
ME Smith ◽  
GW Wallidge ◽  
...  

ABSTRACTSol-gel produced mixed oxide materials have been extensively studied using conventional, ex situ structural techniques. Because the structure of these materials is complex and dependent on preparation conditions, there is much to be gained from in situ techniques: the high brightness of synchrotron x-ray sources makes it possible to probe atomic structure on a short timescale, and hence in situ. Here we report recent results for mixed titania- (and some zirconia-) silica gels and xerogels. Titania contents were in the range 8–18 mol%, and heat treatments up to 500°C were applied. The results have been obtained from intrinsically rapid synchrotron x-ray experiments: i) time-resolved small angle scattering, using a quadrant detector, to follow the initial stages of aggregation between the sol and the gel; ii) the use of a curved image plate detector in diffraction, which allowed the simultaneous collection of data across a wide range of scattering at high count rate, to study heat treatments; and iii) x-ray absorption spectroscopy to explore the effects of ambient moisture on transition metal sites.


2007 ◽  
Vol 1017 ◽  
Author(s):  
Bridget Ingham ◽  
Benoit N. Illy ◽  
Jade R. Mackay ◽  
Stephen P. White ◽  
Shaun C. Hendy ◽  
...  

AbstractZnO is known to produce a wide variety of nanostructures that have enormous scope for optoelectronic applications. Using an aqueous electrochemical deposition technique, we are able to tightly control a wide range of deposition parameters (Zn2+ concentration, temperature, potential, time) and hence the resulting deposit morphology. By simultaneously conducting synchrotron x-ray absorption spectroscopy (XAS) experiments during the deposition, we are able to directly monitor the growth rates of the nanostructures, as well as providing direct chemical speciation of the films. In situ experiments such as these are critical to understanding the nucleation and growth of such nanostructures.Recent results from in situ XAS synchrotron experiments demonstrate the growth rates as a function of potential and Zn2+ concentration. These are compared with the electrochemical current density recorded during the deposition, and the final morphology revealed through ex situ high resolution electron microscopy. The results are indicative of two distinct growth regimes, and simultaneous changes in the morphology are observed.These experiments are complemented by modelling the growth of the rods in the transport-limited case, using the Nernst-Planck equations in 2 dimensions, to yield the growth rate of the volume, length, and radius as a function of time.


Sign in / Sign up

Export Citation Format

Share Document