scholarly journals Insight into Glass Transition Temperature and Mechanical Properties of PVA/TRIS Functionalized Graphene Oxide Composites by Molecular Dynamics Simulation

2021 ◽  
pp. 109770
Author(s):  
Cheng Yuan Dong ◽  
Weizhong Zheng ◽  
Lu Wang ◽  
Weijun Zheng ◽  
Ling Zhao
2016 ◽  
Vol 7 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Jin Won Yu ◽  
Jin Jung ◽  
Yong-Mun Choi ◽  
Jae Hun Choi ◽  
Jaesang Yu ◽  
...  

Epoxy nanocomposites are fabricated by using diamine-functionalized GO and exhibit high Tg, tensile strength, and crosslink density.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 951 ◽  
Author(s):  
Yujing Tang ◽  
Chao Tang ◽  
Dong Hu ◽  
Yingang Gui

In this paper, a molecular dynamics simulation method was used to study the thermo-mechanical properties of cross-linked epoxy resins doped with nano silica particles that were grafted with 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino)ethylamino]-propyl-trimethoxysilane with different chain lengths. Firstly, a set of pure epoxy resin models, and four sets of SiO2/EP composite models were established. Then, a reasonable structure was obtained through a series of optimizations using molecular dynamics calculations. Next, the mechanical properties, hydrogen bond statistics, glass transition temperature, free volume fraction, and chain spacing of the five models were studied comparatively. The results show that doped nano silica particles of surfaces grafted with 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino)ethylamino]-propyl-trimethoxysilane with different chain lengths enhanced mechanical properties such as elastic modulus, shear modulus, and volume modulus obviously. The glass transition temperature increased by 15–16 K, 40–41 K, and 24–27 K, respectively. Finally, the data show that the cross-linked epoxy resin modified by nanoparticles grafted with N-(2-aminoethyl)-3-aminopropyl trimethoxysilane had better effects for improving thermo-mechanical properties by the comparatively studying the five groups of parameter models under the same conditions.


2021 ◽  
pp. 118381
Author(s):  
Mohammad Dashti Najafi ◽  
Elaheh Kowsari ◽  
Hamid Reza Naderi ◽  
Saeedeh Sarabadani Tafreshi ◽  
Amutha Chinnappan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document