scholarly journals Ultrasonic effects on gas tungsten arc based wire additive manufacturing of aluminum matrix nanocomposite

2022 ◽  
pp. 110393
Author(s):  
Tianzhao Wang ◽  
Veronika Mazánová ◽  
Xun Liu
Author(s):  
Jun Xiong ◽  
Yue Mao ◽  
Huihui Zhao

This study focuses on microstructure and mechanical properties as a function of location in additively manufactured high-strength weathering steel components using gas tungsten arc as the heat source. Variations of microstructure and mechanical properties in various locations are presented and analysed. The as-deposited high-strength weathering steel is composed of columnar grain morphology with proeutectoid ferrite, acicular ferrite, side plate ferrite and a small amount of pearlite microstructure in the top region, equiaxed grains with ferrite and pearlite in the middle region, and columnar grains in the near-substrate region with the microstructure similar to that in the top region. There exist obvious layer bands in the middle region, and the forming mechanism of the bands is addressed. Microhardness measurement and tensile strength testing indicate obvious changes in different regions, depending on location and direction of testing specimens. The microhardness in the middle region is inferior to that in both near-substrate and top regions. The ultimate tensile strengths in the travel and deposition height directions are approximately 553 and 506 MPa, respectively. Different locations exhibit heterogeneous tensile strength and elongation due to various microstructures and boundaries. The results indicate the feasibility to fabricate high-strength weathering steel components with good tensile properties using gas tungsten arc–based additive manufacturing.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3534 ◽  
Author(s):  
Corinne Charles Murgau ◽  
Andreas Lundbäck ◽  
Pia Åkerfeldt ◽  
Robert Pederson

In the present study, the gas tungsten arc welding wire feed additive manufacturing process is simulated and its final microstructure predicted by microstructural modelling, which is validated by microstructural characterization. The Finite Element Method is used to solve the temperature field and microstructural evolution during a gas tungsten arc welding wire feed additive manufacturing process. The microstructure of titanium alloy Ti-6Al-4V is computed based on the temperature evolution in a density-based approach and coupled to a model that predicts the thickness of the α lath morphology. The work presented herein includes the first coupling of the process simulation and microstructural modelling, which have been studied separately in previous work by the authors. In addition, the results from simulations are presented and validated with qualitative and quantitative microstructural analyses. The coupling of the process simulation and microstructural modeling indicate promising results, since the microstructural analysis shows good agreement with the predicted alpha lath size.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Subravel V

In this investigation an attempt has been made to study the effect of welding on fusion characteristics of pulsed current gas tungsten arc welded AZ31B magnesium alloy joints. Five joints were fabricated using different levels of welding speed (105 mm/min –145 mm/min). From this investigation, it is found that the joints fabricated using a welding speed of 135 mm/min yielded superior tensile properties compared to other joints. The formation of finer grains and higher hardness in fusion zone and uniformly distributed precipitates are the main reasons for the higher tensile properties of these joints


Author(s):  
Michael Santella ◽  
X. Frank Chen ◽  
Philip Maziasz ◽  
Jason Rausch ◽  
Jonathan Salkin

AbstractA 50.8-mm-deep gas tungsten arc weld was made with matching filler metal in cast Haynes 282 alloy. The narrow-gap joint was filled with 104 weld beads. Visual and dye-penetrant inspection of cross-weld specimens indicated that the cast base metal contained numerous casting defects. No visible indications of physical defects were found in the weld deposit. The weld heat-affected zone was characterized by microcracking and localized recrystallization. The cause of the cracking could not be determined. Hardness testing showed that a softened region in the as-welded heat-affected zone was nearly eliminated by post-weld heat treatment. Tensile testing up to 816 °C showed that cross-weld specimen strengths ranged from 57 to 79% of the cast base metal tensile strength. The stress-rupture strengths of cross-weld specimens are within 20% of base metal reference data. Failures of both tensile and stress-rupture specimens occurred in the base metal.


Sign in / Sign up

Export Citation Format

Share Document