Tensile and fatigue behavior of polymer supported silver thin films at elevated temperatures

2017 ◽  
Vol 193 ◽  
pp. 81-84 ◽  
Author(s):  
Yong-Seok Lee ◽  
Gi-Dong Sim ◽  
Jong-Soo Bae ◽  
Ji-Young Kim ◽  
Soon-Bok Lee
2013 ◽  
Vol 575 ◽  
pp. 86-93 ◽  
Author(s):  
Gi-Dong Sim ◽  
Yong-Seok Lee ◽  
Soon-Bok Lee ◽  
Joost J. Vlassak

2003 ◽  
Vol 429 (1-2) ◽  
pp. 248-254 ◽  
Author(s):  
T.L. Alford ◽  
Linghui Chen ◽  
Kaustubh S. Gadre

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1083
Author(s):  
Christoph Breuner ◽  
Stefan Guth ◽  
Elias Gall ◽  
Radosław Swadźba ◽  
Jens Gibmeier ◽  
...  

One possibility to improve the fatigue life and strength of metallic materials is shot peening. However, at elevated temperatures, the induced residual stresses may relax. To investigate the influence of shot peening on high-temperature fatigue behavior, isothermal fatigue tests were conducted on shot-peened and untreated samples of gamma TiAl 48-2-2 at 750 °C in air. The shot-peened material was characterized using EBSD, microhardness, and residual stress analyses. Shot peening leads to a significant increase in surface hardness and high compressive residual stresses near the surface. Both effects may have a positive influence on lifetime. However, it also leads to surface notches and tensile residual stresses in the bulk material with a negative impact on cyclic lifetime. During fully reversed uniaxial tension-compression fatigue tests (R = −1) at a stress amplitude of 260 MPa, the positive effects dominate, and the fatigue lifetime increases. At a lower stress amplitude of 230 MPa, the negative effect of internal tensile residual stresses dominates, and the lifetime decreases. Shot peening leads to a transition from surface to volume crack initiation if the surface is not damaged by the shots.


2021 ◽  
Vol 11 (9) ◽  
pp. 3778
Author(s):  
Gene Yang ◽  
So-Yeun Kim ◽  
Changhee Sohn ◽  
Jong K. Keum ◽  
Dongkyu Lee

Considerable attention has been directed to understanding the influence of heterointerfaces between Ruddlesden–Popper (RP) phases and ABO3 perovskites on the kinetics of oxygen electrocatalysis at elevated temperatures. Here, we report the effect of heterointerfaces on the oxygen surface exchange kinetics by employing heteroepitaxial oxide thin films formed by decorating LaNiO3 (LNO) on La1.85Sr0.15CuO4 (LSCO) thin films. Regardless of LNO decoration, tensile in-plane strain on LSCO films does not change. The oxygen surface exchange coefficients (kchem) of LSCO films extracted from electrical conductivity relaxation curves significantly increase with partial decorations of LNO, whereas full LNO coverage leads to the reduction in the kchem of LSCO films. The activation energy for oxygen exchange in LSCO films significantly decreases with partial LNO decorations in contrast with the full coverage of LNO. Optical spectroscopy reveals the increased oxygen vacancies in the partially covered LSCO films relative to the undecorated LSCO film. We attribute the enhanced oxygen surface exchange kinetics of LSCO to the increased oxygen vacancies by creating the heterointerface between LSCO and LNO.


1985 ◽  
Vol 48 ◽  
Author(s):  
P. Alexopoulos ◽  
R. H. Geiss ◽  
M. Schlenker

ABSTRACTThin films of Co-10 at% Pt, ranging from 15 to 90 nm in thickness, have been DC-sputtered at various temperatures on to carbon-coated mica, carbon substrates on copper grids, or (001) silicon single crystals under 3 μm pressure of Ar, using targets of the alloy in the hexagonal phase, at growth rates of 9 nm/min. The samples were investigated by TEM, using bright-and dark-field imaging, lattice imaging, selected area diffraction and both Fresnel and focussed Lorentz modes. The primary structure of the films was found to be hexagonal, with a = 0.255 nm and c = 0.414 nm. For the samples sputtered at room temperature, the grain sizes were on the order of 0.μm on carbon-coated mica and carbon-substrate grids, and approximately an order of magnitude smaller on silicon substrates. Heavy streaking along the [001] of the hexagonal matrix was observed on diffraction patterns for grains having the [001] parallel to the surface; this streaking was found to be associated with the presence of a high density of faults parallel to the (001). In films sputtered on to carbon-coated mica at 225 °C, where a substantial reduction of the coercivity is observed, the overwhelming majority of the grains had the (001) basal plane parallel to the surface. Lorentz microscopy showed the magnetic domain structure in films grown on silicon to be markedly different from those grown on the carbon substrates, and further changes occurred for the films grown at elevated temperatures.


1991 ◽  
Vol 239 ◽  
Author(s):  
J. Ruud ◽  
D. Josell ◽  
A. L. Greer ◽  
F. Spaepen

ABSTRACTA new design for a thin film microtensile tester is presented. The strain is measured directly on the free-standing thin film from the displacement of laser spots diffracted from a thin grating applied to its surface by photolithography. The diffraction grating is two-dimensional, allowing strain measurement both along and transverse to the tensile direction. In principle, both Young's modulus and Poisson's ratio of a thin film can be determined. Ag thin films with strong <111> texture were tested. The measured Young moduli agreed with those measured on bulk crystals, but the measured Poisson ratios were low, most likely due to slight transverse folding of the film that developed during the test.


2000 ◽  
Vol 12 (17) ◽  
pp. 4125-4139 ◽  
Author(s):  
A Da Silva ◽  
C Andraud ◽  
J Lafait ◽  
A Dakka

Author(s):  
Stephanie Saalfeld ◽  
Thomas Wegener ◽  
Berthold Scholtes ◽  
Thomas Niendorf

AbstractThe stability of compressive residual stresses generated by deep rolling plays a decisive role on the fatigue behavior of specimens and components, respectively. In this regard, deep rolling at elevated temperature has proven to be very effective in stabilizing residual stresses when fatigue analysis is conducted at ambient temperature. However, since residual stresses can be affected not only by plastic deformation but also when thermal energy is provided, it is necessary to analyze the influence of temperature and time on the relaxation behavior of residual stresses at elevated temperature. To evaluate the effect of deep rolling at elevated temperatures on stability limits under thermal as well as combined thermo-mechanical loads, the present work introduces and discusses the results of investigations on the thermal stability of residual stresses in differently deep rolled material conditions of the steel SAE 1045.


Sign in / Sign up

Export Citation Format

Share Document