Tunable Upconversion Emission from Oil-based Carbon Nanodots

2022 ◽  
pp. 131640
Author(s):  
Naveen Kumar Reddy Bogireddy ◽  
Vivechana Agarwal
2014 ◽  
Vol 5 ◽  
pp. 1513-1522 ◽  
Author(s):  
Venkatesh Gude

Hydrophobic photoluminescent carbon nanodots (CNDs) were fabricated by using citric acid and L-tyrosine precursor molecules through a simple, facile thermal oxidation process in air. These CNDs (less than 4 nm in size) exhibited a characteristic excitation wavelength dependent emission and upconversion emission properties and are insoluble in water, but soluble in organic solvents. FTIR and 1H NMR analyses showed a selective participation of L-tyrosine molecule during the carbonization process at 220 °C without a disturbance of its benzylic protons and aromatic phenyl ring bearing hydroxy group. TEM and XRD studies revealed a quasi-spherical morphology and poor-crystalline nature of CNDs. Because the presence of the hydroxy group of L-tyrosine is dominating at the surface, these CNDs are also soluble in water under basic conditions. The effects of base and silver nanoparticles on the luminescence properties of CNDs were studied and a quenching of fluorescence was observed. These tyrosine-passivated CNDs are applicable for both biologically and commercially.


Chemosensors ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 52
Author(s):  
Nermine V. Fares ◽  
Passant M. Medhat ◽  
Christine M. El Maraghy ◽  
Sherif Okeil ◽  
Miriam F. Ayad

Two inexpensive and simple methods for synthesis of carbon nanodots were applied and compared to each other, namely a hydrothermal and microwave-assisted method. The synthesized carbon nanodots were characterized using transmission electron microscopy (TEM), ultraviolet-visible (UV-Vis), photoluminescence (PL), Fourier transform-infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The synthesized microwave carbon nanodots had smaller particle size and were thus chosen for better electrochemical performance. Therefore, they were used for our modification process. The proposed electrodes performance characteristics were evaluated according to the IUPAC guidelines, showing linear response in the concentration range 10−6–10−2, 10−7–10−2, and 10−8–10−2 M of tobramycin with a Nernstian slope of 52.60, 58.34, and 57.32 mV/decade for the bare, silver nanoparticle and carbon nanodots modified carbon paste electrodes, respectively. This developed potentiometric method was used for quantification of tobramycin in its co-formulated dosage form and spiked human plasma with good recovery percentages and without interference of the co-formulated drug loteprednol etabonate and excipients.


2021 ◽  
Vol 127 (7) ◽  
Author(s):  
Dongdong Li ◽  
Jianye Mo ◽  
Chong Wang ◽  
Zhiwei Wu ◽  
Aihua Hao ◽  
...  

2021 ◽  
Vol 68 (3) ◽  
pp. 1101-1106
Author(s):  
Yong Fang ◽  
Zhiwei Zhao ◽  
Mengru Zhu ◽  
Zhengjin Weng ◽  
Chao Fang ◽  
...  

Nano Research ◽  
2021 ◽  
Author(s):  
Yu Gao ◽  
Wenzhan Xu ◽  
Fang He ◽  
Pengbo Nie ◽  
Qingdan Yang ◽  
...  

2021 ◽  
pp. 149947
Author(s):  
Cheng-Long Shen ◽  
Jin-Hao Zang ◽  
Qing Lou ◽  
Guang-Song Zheng ◽  
Meng-Yuan Wu ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1247
Author(s):  
Sarah Belperain ◽  
Zi Yae Kang ◽  
Andrew Dunphy ◽  
Brandon Priebe ◽  
Norman H. L. Chiu ◽  
...  

Cardiovascular disease (CVD) has become an increasingly important topic in the field of medical research due to the steadily increasing rates of mortality caused by this disease. With recent advancements in nanotechnology, a push for new, novel treatments for CVD utilizing these new materials has begun. Carbon Nanodots (CNDs), are a new form of nanoparticles that have been coveted due to the green synthesis method, biocompatibility, fluorescent capabilities and potential anti-antioxidant properties. With much research pouring into CNDs being used as bioimaging and drug delivery tools, few studies have been completed on their anti-inflammatory potential, especially in the cardiovascular system. CVD begins initially by endothelial cell inflammation. The cause of this inflammation can come from many sources; one being tumor necrosis factor (TNF-α), which can not only trigger inflammation but prolong its existence by causing a storm of pro-inflammatory cytokines. This study investigated the ability of CNDs to attenuate TNF-α induced inflammation in human microvascular endothelial cells (HMEC-1). Results show that CNDs at non-cytotoxic concentrations reduce the expression of pro-inflammatory genes, mainly Interleukin-8 (IL-8), and interleukin 1 beta (IL-1β). The uptake of CNDs by HMEC-1s was examined. Results from the studies involving channel blockers and endocytosis disruptors suggest that uptake takes place by endocytosis. These findings provide insights on the interaction CNDs and endothelial cells undergoing TNF-α induced cellular inflammation.


Sign in / Sign up

Export Citation Format

Share Document