A Comparative Study on Characterization of Used Cooking Oil and Mustard Oil for Biodiesel Production: Engine Performance

2018 ◽  
Vol 5 (9) ◽  
pp. 18187-18201
Author(s):  
P.A. Satyanarayana ◽  
Ravi Kanth Oleti ◽  
Swarna Uppalapati ◽  
V. Sridevi
2021 ◽  
Vol 170 ◽  
pp. 302-314
Author(s):  
Adeyinka S. Yusuff ◽  
Aman K. Bhonsle ◽  
Jayati Trivedi ◽  
Dinesh P. Bangwal ◽  
Lok P. Singh ◽  
...  

Author(s):  
Fiona Rachma Annisa ◽  
Indang Dewata ◽  
Hary Sanjaya ◽  
Latisma Dj ◽  
Ananda Putra ◽  
...  

This work has investigated the reusability of silica-titania in various temperatures (50 – 70°C) of biodiesel production from waste cooking oil. The reused silica-titania catalyst collected from silica-titania catalyst waste produced from the process of separating the catalyst from biodiesel products from palm oil and used cooking oil at various temperatures. The 1st and 2nd reused SiO2-TiO2 were characterized by DR UV-Vis and the spectra were deconvoluted for calculate the fraction of titanium in tetrahedral coordination. In addition the biodiesel products were characterized using FTIR, and several properties of biodiesel such as density, flow rate and acid value were analyzed in order to get the information about catalytic activity reused SiO2-TiO2. The results show the titanium tetrahedral fraction in reused catalyst (1st) and (2nd) are found to be 24,98% and 24.65%, respectively. The FTIR characterization of biodiesel products and waste cooking oil are almost similar. The analysis of waste cooking oil converted to biodiesel shows an optimum temperature of 50oC that at this temperature the lowest density or highest flow rate gave highest conversion of 47.82% using BCR1 and 39.13% using BCR2.


2020 ◽  
Vol 851 ◽  
pp. 184-193
Author(s):  
Thutug Rahadiant Primadi ◽  
Fauziatul Fajaroh ◽  
Aman Santoso ◽  
Nazriati ◽  
Endang Ciptawati

Until now, used cooking oil (jelantah) has not been utilized optimally. This study seeks to convert this waste into biodiesel. Used cooking oil usually contains high concentration of free fatty acids which can be converted into methyl esters through trans-esterification by methanol. This effort is in line with the increasing need for renewable energy sources. Because the waste still contains high concentrations of free fatty acids, it is necessary to think about the right process and catalyst in converting it as biodiesel. One heterogeneous catalyst that is thought to excel in biodiesel production is ferrite-based nanocomposites, namely CaO@CoFe2O4 nanoparticles. The advantages of this catalyst are: it has high reactivity, thermal and chemical stability, and can be drawn by magnetic fields. This last property facilitates the catalyst isolation at the end of the process for recycling purposes. The catalytic power is expected to increase through impregnation with alkaline earth metal oxides which have a relatively high basicity, namely CaO. The purpose of this study was to synthesize and to characterize CaO@CoFe2O4, then to study its potential catalytic in biodiesel production from used cooking oil in various weight percent of catalyst. The main steps include: (1) synthesis of CoFe2O4 by coprecipitation; (2) Impregnation of CaO into CoFe2O4 and converted to CaO@CoFe2O4; (3) Characterization of the synthesized material by XRD, BET, and SEM/EDX; (4) application of CaO@CoFe2O4 in biodiesel production from used cooking oil; (5) characterization of biodiesel produced by viscosity measurement, yield and GC-MS analysis results. Based on the results of XRD and SEM/EDX analysis, the CaO@ CoFe2O4 catalyst has been successfully synthesized. Under optimal conditions, the yield of methyl ester produced with the addition of 2% of catalyst was 80.62%.


2015 ◽  
Vol 1113 ◽  
pp. 674-678
Author(s):  
Syarifah Yunus ◽  
Noriah Yusoff ◽  
Muhammad Faiz Fikri Ahmad Khaidzir ◽  
Siti Khadijah Alias ◽  
Freddawati Rashiddy Wong ◽  
...  

The continued using of petroleum energy as a sourced for fuel is widely recognized as unsustainable because of the decreasing of supplies while increasing of the demand. Therefore, it becomes a global agenda to develop a renewable, sustainable and alternative fuel to meets with all the demand. Thus, biodiesel seems to be one of the best choices. In Malaysia, the biodiesel used is from edible vegetable oil sources; palm oil. The uses of palm oil as biodiesel production source have been concern because of the competition with food materials. In this study, various types of biodiesel feedstock are being studied and compared with diesel. The purpose of this comparison is to obtain the optimum engine performance of these different types of biodiesel (edible, non-edible, waste cooking oil) on which are more suitable to be used as alternative fuel. The optimum engine performance effect can be obtains by considering the Brake Power (BP), Specific Fuel Consumption (SFC), Exhaust Gas Temperature (EGT) and Brake Thermal Efficiency (BTE).


2016 ◽  
Vol 527 ◽  
pp. 81-95 ◽  
Author(s):  
Jabbar Gardy ◽  
Ali Hassanpour ◽  
Xiaojun Lai ◽  
Mukhtar H. Ahmed

InCIEC 2013 ◽  
2014 ◽  
pp. 191-200
Author(s):  
M. M. A. Hafiz ◽  
A. R. M. Ridzuan ◽  
M. A. Fadzil ◽  
J. Nurliza

Author(s):  
Sumitkumar Joshi ◽  
Pradipkumar Hadiya ◽  
Manan Shah ◽  
Anirbid Sircar

Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 690 ◽  
Author(s):  
Edgar M. Sánchez Faba ◽  
Gabriel O. Ferrero ◽  
Joana M. Dias ◽  
Griselda A. Eimer

Recent research focuses on new biodiesel production and purification technologies that seek a carbon-neutral footprint, as well as cheap, renewable and abundant raw materials that do not compete with the demand for food. Then, many attractive alternatives arise due to their availability or low-cost, such as used cooking oil, Jatropha oil (non-edible) or byproducts of vegetable oil refineries. Due to their composition and the presence of moisture, these oils may need a pretreatment to reach the established conditions to be used in the biodiesel production process so that the final product complies with the international quality standards. In this work, a solid catalyst based on 10 wt % sodium oxide supported on mesoporous silica SBA-15, was employed in the transesterification of different feedstocks (commercial sunflower and soybean oil, used cooking oil, acid oil from soapstock and Jatropha hieronymi oil) with absolute methanol in the following reaction conditions—2–8 wt % catalyst, 14:1 methanol to oil molar ratio, 60 °C, vigorous magnetic stirring and 5 h of reaction. In this way, first- and second-generation biodiesel was obtained through heterogeneous catalysis with methyl ester yields between 52 and 97 wt %, depending on the free fatty acid content and the moisture content of the oils.


2010 ◽  
Vol 14 (4) ◽  
pp. 339-345 ◽  
Author(s):  
M.C. Math ◽  
Sudheer Prem Kumar ◽  
Soma V. Chetty

Sign in / Sign up

Export Citation Format

Share Document