Tuning of a wide range of low resonance frequencies by a novel multi-resonant piezoelectric energy harvester

2020 ◽  
Vol 28 ◽  
pp. 85-87
Author(s):  
Shradha Saxena ◽  
Rakesh Kumar Dwivedi ◽  
Vijay Khare
Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Xiaohua Huang ◽  
Cheng Zhang ◽  
Keren Dai

Using the piezoelectric effect to harvest energy from surrounding vibrations is a promising alternative solution for powering small electronic devices such as wireless sensors and portable devices. A conventional piezoelectric energy harvester (PEH) can only efficiently collect energy within a small range around the resonance frequency. To realize broadband vibration energy harvesting, the idea of multiple-degrees-of-freedom (DOF) PEH to realize multiple resonant frequencies within a certain range has been recently proposed and some preliminary research has validated its feasibility. Therefore, this paper proposed a multi-DOF wideband PEH based on the frequency interval shortening mechanism to realize five resonance frequencies close enough to each other. The PEH consists of five tip masses, two U-shaped cantilever beams and a straight beam, and tuning of the resonance frequencies is realized by specific parameter design. The electrical characteristics of the PEH are analyzed by simulation and experiment, validating that the PEH can effectively expand the operating bandwidth and collect vibration energy in the low frequency. Experimental results show that the PEH has five low-frequency resonant frequencies, which are 13, 15, 18, 21 and 24 Hz; under the action of 0.5 g acceleration, the maximum output power is 52.2, 49.4, 61.3, 39.2 and 32.1 μW, respectively. In view of the difference between the simulation and the experimental results, this paper conducted an error analysis and revealed that the material parameters and parasitic capacitance are important factors that affect the simulation results. Based on the analysis, the simulation is improved for better agreement with experiments.


2017 ◽  
Vol 24 (19) ◽  
pp. 4484-4491 ◽  
Author(s):  
R Tikani ◽  
L Torfenezhad ◽  
M Mousavi ◽  
S Ziaei-Rad

Nowadays, environmental energy resources, especially mechanical vibrations, have attracted the attention of researchers to provide energy for low-power electronic circuits. A common method for environmental mechanical energy harvesting involves using piezoelectric materials. In this study, a spiral multimode piezoelectric energy harvester was designed and fabricated. To achieve wide bandwidth in low frequencies (below 15 Hz), the first three resonance frequencies of the beam were designed to be close to each other. To do this, the five lengths of the substrate layer were optimized by the Taguchi method, using an L27 orthogonal array. Each experiment of the Taguchi method was then simulated in ANSYS software. Next, the optimum level of each design variable was obtained. A test rig was then constructed based on the optimum design values and some experimental investigations were conducted. A good correlation was observed between measured and the finite element results.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5808
Author(s):  
Ondrej Rubes ◽  
Zdenek Machu ◽  
Oldrich Sevecek ◽  
Zdenek Hadas

Kinetic piezoelectric energy harvesters are used to power up ultra-low power devices without batteries as an alternative and eco-friendly source of energy. This paper deals with a novel design of a lead-free multilayer energy harvester based on BaTiO3 ceramics. This material is very brittle and might be cracked in small amplitudes of oscillations. However, the main aim of our development is the design of a crack protective layered architecture that protects an energy harvesting device in very high amplitudes of oscillations. This architecture is described and optimized for chosen geometry and the resulted one degree of freedom coupled electromechanical model is derived. This model could be used in bistable configuration and the model is extended about the nonlinear stiffness produced by auxiliary magnets. The complex bistable vibration energy harvester is simulated to predict operation in a wide range of frequency excitation. It should demonstrate typical operation of designed beam and a stress intensity factor was calculated for layers. The whole system, without presence of cracks, was simulated with an excitation acceleration of amplitude up to 1g. The maximal obtained power was around 2 mW at the frequency around 40 Hz with a maximal tip displacement 7.5 mm. The maximal operating amplitude of this novel design was calculated around 10 mm which is 10-times higher than without protective layers.


Author(s):  
Shaofan Qi ◽  
Roger Shuttleworth ◽  
S. Olutunde Oyadiji

Energy harvesting is the process of converting low level ambient energy into usable electrical energy, so that remote electronic instruments can be powered without the need for batteries or other supplies. Piezoelectric material has the ability to convert mechanical energy into electrical energy, and cantilever type harvesters using this material are being intensely investigated. The typical single cantilever energy harvester design has a limited bandwidth, and is restricted in ability for converting environmental vibration occurring over a wide range of frequencies. A multiple cantilever piezoelectric generator that works over a range of frequencies, yet has only one Piezo element, is being investigated. The design and testing of this novel harvester is described.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 995
Author(s):  
Xiaoyu Chen ◽  
Xuhui Zhang ◽  
Luyang Chen ◽  
Yan Guo ◽  
Fulin Zhu

To improve the energy harvesting performance of an energy harvester, a novel bistable piezoelectric energy harvester with variable potential well (BPEH-V) is proposed by introducing a spring to the external magnet from a curve-shaped beam bistable harvester (CBH-C). First, finite element simulation was performed in COMSOL software to validate that the curved beam configuration was superior to the straight beam in power generation performance, which benefits energy harvesting. Moreover, the nonlinear magnetic model was obtained by using the magnetic dipoles method, and the nonlinear restoring force model of the curve-shaped beam was acquired based on fitting the experimental data. The corresponding coupled governing equations were derived by using generalized Hamilton’s principle, the dynamic responses were obtained by solving the coupling equations with the ode45 method. Finally, the numerical simulations showed that the proposed harvester can make interwell oscillations easier due to the spring being efficiently introduced to pull down the potential barrier compared with the conventional bistable harvester. Spring stiffness has a great impact on characteristics of the system, and a suitable stiffness contributes to realize large-amplitude interwell oscillations over a wide range of excitation, especially in the low excitation condition.


2017 ◽  
Vol 26 (09) ◽  
pp. 1750128 ◽  
Author(s):  
Babak Montazer ◽  
Utpal Sarma

Modeling and analysis of a MEMS piezoelectric (PZT-Lead Zirconate Titanate) unimorph cantilever with different substrates are presented in this paper. Stainless steel and Silicon [Formula: see text] are considered as substrate. The design is intended for energy harvesting from ambient vibrations. The cantilever model is based on Euler–Bernoulli beam theory. The generated voltage and power, the current density, resonance frequencies and tip displacement for different geometry (single layer and array structure) have been analyzed using finite element method. Variation of output power and resonant frequency for array structure with array elements connected in parallel have been studied. Strain distribution is studied for external vibrations with different frequencies. The geometry of the piezoelectric layer as well as the substrate has been optimized for maximum power output. The variation of generated power output with frequency and load has also been presented. Finally, several models are introduced and compared with traditional array MEMS energy harvester.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Andrius Čeponis ◽  
Dalius Mažeika

This paper presents results of numerical and experimental investigations related to the piezoelectric energy harvester that operates at multifrequency mode. Employment of such operation principle provides an opportunity for obtaining frequency response characteristics of the harvester with several resonant frequencies and in this way increasing efficiency of the harvester at a wide spectrum of excitation frequencies. The proposed design of the energy harvester consists of five cantilevers which forms square type system. Cross sections of the cantilevers are modified by periodical cylindrical gaps in order to increase strain value and to obtain more uniform strain distribution along the cantilevers. Cantilevers are rigidly connected to each other and compose an indissoluble system. Square type harvester has seismic masses at every corner. These masses are placed under specific angle in order to reduce natural frequencies of the system and to create additional rotation moments in the body of harvester. Results of the numerical investigation revealed that harvester has five resonance frequencies in the range from 15 Hz to 300 Hz. Numerical analysis of the harvester revealed that the highest open circuit voltage density is 19.85 mV/mm3. Moreover, density of the total electrical energy reached 27.5 μJ/mm3. Experimental investigation confirmed that frequency response characteristics are obtained during numerical investigation and showed that energy density of the whole system reached 30.8 μJ/mm3.


2014 ◽  
Vol 1051 ◽  
pp. 932-936
Author(s):  
Mun Heng Lam ◽  
Hanim Salleh

This paper presents work on improving piezoelectric energy harvesters. Harvesting energy from vibrations has received massive attention due to it being a renewable energy source that has a wide range of applications. Over the years of development, there is always research to further improve and optimise piezoelectric energy harvesters. For this paper, the piezoelectric specimen is made of PZT (Lead Zirconate Titanate), brass reinforced and has 31.8mm length, 12.7mm width and 0.511mm thick. An external beam is implemented to provide deflection amplification which in turn increases the output of the energy harvester. Depending on the configuration of the external beam, it can amplify output voltage from 100% to 300%.


Author(s):  
Wanlu Zhou ◽  
Gopinath Reddy Penamalli ◽  
Lei Zuo

A novel piezoelectric energy harvester with multi-mode dynamic magnifier is proposed and investigated in this paper, which is capable of significantly increasing the bandwidth and the energy harvested from the ambient vibration. The design comprises of an multi-mode intermediate beam with a tip mass, called “dynamic magnifier”, and an “energy harvesting beam with a tip mass. The piezoelectric film is adhered to the harvesting beam to harvest the vibration energy. By properly designing the parameters, such as the length, width and thickness of the two beams and the weight of the two tip masses, we can virtually magnify the motion in all the resonance frequencies of the energy harvesting beam, in a similar way as designing a new beam-type tuned mass damper (TMD) to damp the resonance frequencies of all the modes of the primary beam. Theoretical analysis, finite element simulation, and the experiment study are carried out. The results show that voltage produced by the harvesting beam is amplified for efficient energy harvesting over a broader frequency range, while the peaks of the first three modes of the primary beam can be effectively mitigated simultaneously. The experiment demonstrates 25.5 times more energy harvesting capacity than the conventional cantilever type harvester in broadband frequency 3–300Hz, and over 1000 times more energy close to the first three resonances of harvesting beam.


Author(s):  
Michael W. Shafer ◽  
Robert MacCurdy ◽  
Ephrahim Garcia

Discrete animal-mounted sensors and tags have a wide range of potential applications for researching wild animals and their environments. The devices could be used to monitor location, metabolic output, or used as environmental monitoring sentinels. These applications are made possible by recent decreases in the size, mass, and power consumption of modern microelectronics. Despite these performance increases, for extended deployments these systems need to generate power in-situ. In this work, we explore a device that was recently deployed to test the concept of vibrational piezoelectric energy harvesting on flying birds. We explain the development of the device and introduce test results conducted on flying pigeons (Columba livia). The 12 g testing device consisted of a miniature data acquisition system and a piezoelectric energy harvester. The system recorded both the harvested power and the in-flight accelerations of the bird. The energy harvester included a wireless receiver, battery and linear servo. By remotely actuating the linear servo, we were able to arrest the energy harvester for portions of the flight. In doing so, we will be able to compare flight accelerations of a bird with a simple proof mass and with a dynamic mass without having to stop the flight of the bird. The comparison of these two cases allows for the assessment of the feasibility of employing vibrational energy harvesting on a flying bird. We present the initial results of this testing with regard to the harvested power and the in-flight acceleration profiles.


Sign in / Sign up

Export Citation Format

Share Document