Numerical simulation of pull-out test on cable bolts

Author(s):  
Shikha Singh ◽  
A.K. Srivastava
2018 ◽  
Vol 191 ◽  
pp. 1148-1158 ◽  
Author(s):  
Jianhang Chen ◽  
Serkan Saydam ◽  
Paul C. Hagan

2020 ◽  
Vol 24 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Pu Wang ◽  
Lishuai Jiang ◽  
Changqing Ma ◽  
Anying Yuan

The study of evolution laws of the mining-induced stress in floor strata affected by overhead mining is extremely important with respect to the stability and support of a floor roadway. Based on the geological conditions of the drainage roadway in the 10th district in a coalmine, a mechanical model of a working face for overhead mining over the roadway is established, and the laws influencing mining stress on the roadway in different layers are obtained. The evolution of mining stress in floor with different horizontal distances between the working face and the floor roadway that is defined as LD are examined by utilizing UDEC numerical simulation, and the stability of roadway is analyzed. The results of the numerical simulation are verified via on-site tests of the deformation of the surrounding rocks and bolts pull-out from the drainage roadway. The results indicate that the mining stress in floor is high, which decreases slowly within a depth of less than 40 m where the floor roadway is significantly affected. The mining stress in the floor increases gradually, and the effect of the mining on the roadway is particularly evident within 0 m ≤ LD ≤ 40 m. Although the floor roadway is in a stress-relaxed state, the worst stability of the surrounding rocks is observed during the range -20 m ≤ LD < 0 m, in which the negative value indicates that the working face has passed the roadway. The roadway is affected by the recovery of the abutment stress in the goaf when -60 m ≤ LD <20 m, and thus it is important to focus on the strengthening support. The results may provide a scientific basis for establishing a reasonable location and support of roadways under similar conditions.


2019 ◽  
Vol 817 ◽  
pp. 514-519 ◽  
Author(s):  
Francesco Finelli ◽  
Angelo Di Tommaso ◽  
Cristina Gentilini

The paper reports the results of a numerical simulation performed to study the experimental pull-out behavior of twisted steel connectors inserted in fired-clay brick units. The experimental results obtained in a previous campaign are used to calibrate a 3D refined numerical model developed by means of the finite element program Abaqus. The numerical model is tuned to accurately reproduce the experimental results in terms of loads and bar displacements.


Author(s):  
P. Pandiyan ◽  
G. Uma ◽  
M. Umapathy

Purpose This paper aims to present a design and simulation of electrostatic nanoelectromechanical system (NEMS)-based logic gates using laterally actuated cantilever with double-electrode structure that can implement logic functions, similar to logic devices that are made of solid-state transistors which operates at 5 V. Design/methodology/approach The analytical modeling of NEMS switch is carried out for finding the pull-in and pull-out voltage based on Euler-Bernoulli’s beam theory, and its numerical simulation is performed using finite element method computer-aided design tool COVENTORWARE. Findings This paper reports analytical and numerical simulation of basic NEMS switch to realize the logic gates. The proposed logic gate operates on 5 V which suits well with conventional complementary metal oxide semiconductor (CMOS) logic which in turn reduces the power consumption of the device. Originality/value The proposed logic gates use a single bit NEMS switch per logic instead of using 6-14 individual transistors as in CMOS. One exclusive feature of this proposed logic gates is that the basic NEMS switch is structurally modified to function as specific logic gates depending upon the given inputs.


2012 ◽  
Vol 598 ◽  
pp. 454-458
Author(s):  
Jian Hua Yang

Prism pull-out test results was used to build anchorage bonding interface slip model(ABISM), with this model, the behaviors of post-embedded bars in reinforced concrete with different anchorage depth were analyzed by one-dimensional numerical method, and the calculation values was compared with the experimental values. The results showed that: the calculated value is in good agreement with the experimental values. this model can provides an important reference for anchor design.


2010 ◽  
Vol 163-167 ◽  
pp. 1325-1328
Author(s):  
Zhi Xiang Zha ◽  
Wei Peng ◽  
Xi La Liu

A laboratory test of anchor pull-out model under plane-strain condition on the shear stress transfer for the interfaces of anchorage type structures was carried out in this paper. The results of test were verified by corresponding numerical simulation model. It was proved that the pull-out experimental model under plane-strain condition was an effective model used to research the working mechanism of anchorage structure.


2011 ◽  
Vol 255-260 ◽  
pp. 3133-3136
Author(s):  
Quan Bin Zhao ◽  
Xin Liang Jiang

The characteristics and research situation of bond-slip performance at the inter face of concrete and other materials are introduced, and the bond-slip constitutive relation models are summarized at the same time. Through the load-slip curves obtained from the pull-out experiment of CFFP, the proposed bond-slip constitutive relation models are presenting, including the simple one. With the numerical simulation analysis of CFFP is carried out by the use of the proposed constitutive relation, while the numerical simulation results are in good agreement with the experimental results conducted before, which is feasible and can be applied to further research on CFFP.


Sign in / Sign up

Export Citation Format

Share Document