Manufacturing and categorization of AL/TIB2 metal matrix compound by means of stir casting method

Author(s):  
Pankaj Kumar Singh ◽  
Pradeep Kumar Singh ◽  
Kamal Sharma
2018 ◽  
Vol 16 (1) ◽  
pp. 726-731 ◽  
Author(s):  
Tennur Gülşen Ünal ◽  
Ege Anıl Diler

AbstractThe effects of micro and nano sized reinforcement particles on microstructure and mechanical properties of aluminium alloy-based metal matrix composites were investigated in this study. AlSi9Cu3 alloy was reinforced with micro and nano sized ceramic reinforcement particles at different weight fractions by using a stir casting method. The mechanical tests (hardness, three point bending) were performed to determine the mechanical properties of AlSi9Cu3 alloy-based microcomposites (AMMCs) and nanocomposites (AMMNCs). The experimental results have shown that the size and weight fraction of reinforcement particles have a strong influence on the microstructure and the mechanical properties of AlSi9Cu3 alloy-based microcomposites and nanocomposites. The relative densities of all AMMC and AMMNC samples are lower than unreinforced AlSi9Cu3 alloy due to porosity formation with the increase of weight fraction of reinforcement particles. As weight fraction increases, hardness values of AMMCs and AMMNCs increase. Maximum flexural strength can be obtained at 3.5wt.% for the AMMC sample with microsized Al2O3 particles and at 2wt.% for the AMMNC sample with nano-sized Al2O3 particles. After the weight fractions exceed these values, flexural strengths of both AMMCs and AMMNCs decrease due to clustering of Al2O3 particles.


2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2021 ◽  
Vol 106 ◽  
pp. 10-16
Author(s):  
Anwesh K. Virkunwar ◽  
Shouvik Ghosh ◽  
Ranjan Basak

In present work, Aluminium 6061 was reinforced by varying the percentage of sugarcanebagasse ash (SCBA). Al-SCBA composite samples were fabricated by stir casting method. The weartest conducted on the samples using a pin on disc machine under the normal sliding condition. Basedon the testing parameters (Volume fraction ‘V’, Load ‘L’, sliding speed ‘S’) an L27 Orthogonal arraydesign was selected. According to L27 array, the wear & friction test was conducted. variance analysis(ANOVA) was performed to find out the important parameter and contribution in percentage for eachparameter on the composite material. To verify the analysis results with experimented resultconfirmation test was carried out. Further, to find the wear mechanism on the composite sampleselectron microscopy (SEM) test was used.


Author(s):  
M. Palanivendhan ◽  
J. Chandradass ◽  
Ajith Rajendran ◽  
Nishanth M. Govindarajan ◽  
M. Adwait Krishnaa

In the present study, alumina reinforced copper metal matrix composites were prepared by stir casting method. Three different specimens were prepared by changing the weight ratio of alumina to copper. The samples were prepared by adding 10%, 20% and 30% alumina to copper matrix. The three specimens were subjected to mechanical, thermal and corrosion testing, in order to find out the properties of the material. Various mechanical tests like hardness, impact and corrosion were performed including thermal conductivity to understand the behaviour of the specimens under combined loads. Specimen number 2 which was 80%-20% copper to alumina was found to be the best combination for such type of applications.


2018 ◽  
Vol 7 (4.30) ◽  
pp. 429
Author(s):  
Awwal Hussain Nuhu ◽  
Suzi Salwah Binti Jikan ◽  
Saliza Binti Asman ◽  
Nur Azam Bin Badarulzaman ◽  
Dagaci Muhammad Zago

Aluminium metal matrix composites were fabricated from recycled materials via stir casting method. The composites differed in their holding time (ht) that is 30 minutes, 45 minutes and 60 minutes accordingly. The microstructures of the composites were analysed using optical microscope as well as scanning electron microscope in order to examine their morphological make-up. The average densities of the composites were determined and compared with one another. There is no significant difference between average densities of the fabricated composites. The observations revealed that varying the ht has greater impact the composites’ morphology, particularly on those composites which have been fabricated at 60 minutes ht.


Author(s):  
Dhiroj Kumar Pradham

Abstract: In recent era early growth and remarkable development with regards of composite materials has become a need of designing area on account of consideration to the drawbacks over conventional materials in improving material properties which includes viz, stiffness, density, toughness, and strength.This research focuses on utilizing the stir casting method of forming better metal matrix composite by using ZrO2 as reinforcing material thereby developing a composite material.Current study investigates Al357 alloy is fortified with different percentage of ZrO2 (3%, 5% and 7%) is concocted by the stir casting and studied for a microstructure, mechanical and the statistical modelling of wear analysis. Wear tracks of the as-cast alloy and its composites were examined using SEM. From the results it was concluded that compared to as-cast alloy A357/ 7 % ZrO2 displayed better properties compared followed by 5% and 3% composites. Keywords: MMC’S; ZrO2; Aluminium 357 alloy; Hardness test; Statistical Analysis.


In these days exceptional properties are needed for wide range of applications like aerospace, medical, and automobile to improve strength, corrosive resistance and weight reduction. For these purposes composites have been developed. Metal matrix composite (MMC) is one of them, and aluminium composites have been using in various fields because of its less weight, thermal and electrical conduction and corrosive resistance. Here we are introducing silicon nitride (Si3N4 ) as reinforcement which is a ceramic in aluminium 6061 which is effectively used in many applications these days. Our composite has been made using Stir casting method for proper dispersion. Mechanical testing methods like Brinell’s, Charpy impact tests are carried out to identify properties of composite and microstructure is also been figured out through SEM. Properties of both 5% and 15% Si3N4 powder composition of MMC are compared with each other and discussions are made.


Sign in / Sign up

Export Citation Format

Share Document