scholarly journals Effect of Holding Time on Density and Morphological Property of Aluminium Composite Using Recycled Materials by Stir Casting Method

2018 ◽  
Vol 7 (4.30) ◽  
pp. 429
Author(s):  
Awwal Hussain Nuhu ◽  
Suzi Salwah Binti Jikan ◽  
Saliza Binti Asman ◽  
Nur Azam Bin Badarulzaman ◽  
Dagaci Muhammad Zago

Aluminium metal matrix composites were fabricated from recycled materials via stir casting method. The composites differed in their holding time (ht) that is 30 minutes, 45 minutes and 60 minutes accordingly. The microstructures of the composites were analysed using optical microscope as well as scanning electron microscope in order to examine their morphological make-up. The average densities of the composites were determined and compared with one another. There is no significant difference between average densities of the fabricated composites. The observations revealed that varying the ht has greater impact the composites’ morphology, particularly on those composites which have been fabricated at 60 minutes ht.

Todays composite material have gained more popularity due to their improved properties over the conventional materials. In the present paper, insitu composites were fabricated via chemical reaction between molten aluminium alloy and halide salt KBF4 with cryolite at 8000C by stir casting method. The microstructures of the composite containing 3 and 5 wt. % of AlB2 reinforcement phase have been compared with the unreinforced aluminium alloy. The microstructure analysis shows clean AlB2 particles uniformly distributed throughout the matrix. With the increase in the AlB2 reinforcement, insitu composite show less agglomeration and recovery of boron is more when compared to the unmixed halide salt in the fabrication of inistu composite


2018 ◽  
Vol 16 (1) ◽  
pp. 726-731 ◽  
Author(s):  
Tennur Gülşen Ünal ◽  
Ege Anıl Diler

AbstractThe effects of micro and nano sized reinforcement particles on microstructure and mechanical properties of aluminium alloy-based metal matrix composites were investigated in this study. AlSi9Cu3 alloy was reinforced with micro and nano sized ceramic reinforcement particles at different weight fractions by using a stir casting method. The mechanical tests (hardness, three point bending) were performed to determine the mechanical properties of AlSi9Cu3 alloy-based microcomposites (AMMCs) and nanocomposites (AMMNCs). The experimental results have shown that the size and weight fraction of reinforcement particles have a strong influence on the microstructure and the mechanical properties of AlSi9Cu3 alloy-based microcomposites and nanocomposites. The relative densities of all AMMC and AMMNC samples are lower than unreinforced AlSi9Cu3 alloy due to porosity formation with the increase of weight fraction of reinforcement particles. As weight fraction increases, hardness values of AMMCs and AMMNCs increase. Maximum flexural strength can be obtained at 3.5wt.% for the AMMC sample with microsized Al2O3 particles and at 2wt.% for the AMMNC sample with nano-sized Al2O3 particles. After the weight fractions exceed these values, flexural strengths of both AMMCs and AMMNCs decrease due to clustering of Al2O3 particles.


2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2020 ◽  
Vol 15 (3) ◽  
Author(s):  
Arvind R S ◽  
Prasanna Ram M ◽  
Prashanth T ◽  
Jaimon Dennis Quadros

Cenosphere fly ash is one of the most inexpensive and low-density material which is abundantly available as a solid waste by-product of coal combustion in thermal power plants. Aluminium metal matrix composites with Nickel coated cenospheres as the reinforcement is prepared by stir casting route. The composites are prepared with varying percentages of cenospheres in the percentage of 2-10% by weight of the composite. Immersion corrosion tests are conducted on the composites in three different medium and for three different time durations. It is evident from the test results as well as the microstructure images that the weight loss of samples with 8% Nickel coated cenospheres has shown least corrosion or the highest corrosion resistance when compared to the counterparts.


2013 ◽  
Vol 845 ◽  
pp. 398-402 ◽  
Author(s):  
Chinnasamy Muthazhagan ◽  
A. Gnanavelbabu ◽  
G.B. Bhaskar ◽  
K. Rajkumar

This paper deals with the mechanical properties in conventional heat treatment of Al (6061)-B4C-Graphite. Aluminium Metal Matrix Composites (MMC) is fabricated through two step stir casting method. The composites were fabricated with various volume percentage levels as Aluminium reinforced with (5, 10 &15%) Boron Carbide and (5,10 & 15%) of Graphite. Fabricated composites were subjected to conventional heat treatment for enhancing the mechanical properties. Influences of Graphite reinforcement on mechanical properties of Aluminum-Boron carbide composites were analyzed. The microstructure studies were also carried out. It is observed that increasing the graphite content within the aluminum matrix results in significant decrease in ductility, hardness, ultimate tensile strength. The addition of boron carbide conversely increased the hardness of the composites.


Author(s):  
M. Palanivendhan ◽  
J. Chandradass ◽  
Ajith Rajendran ◽  
Nishanth M. Govindarajan ◽  
M. Adwait Krishnaa

In the present study, alumina reinforced copper metal matrix composites were prepared by stir casting method. Three different specimens were prepared by changing the weight ratio of alumina to copper. The samples were prepared by adding 10%, 20% and 30% alumina to copper matrix. The three specimens were subjected to mechanical, thermal and corrosion testing, in order to find out the properties of the material. Various mechanical tests like hardness, impact and corrosion were performed including thermal conductivity to understand the behaviour of the specimens under combined loads. Specimen number 2 which was 80%-20% copper to alumina was found to be the best combination for such type of applications.


2020 ◽  
Vol 7 (1) ◽  
pp. 26-36
Author(s):  
Murlidhar Patel ◽  
Sushanta Kumar Sahu ◽  
Mukesh Kumar Singh

In this present research particulate reinforced aluminium metal matrix composites are developed by using sand mould and liquid stir casting processing route in which AA5052 reinforced with 5 wt. % SiC particulates of 63µm particle size. The density, porosity, micro-hardness, and compressive strength of SiC particulate reinforced AA5052 MMC were investigated and compared these properties with similar properties of unreinforced AA5052. The microstructure of the developed composite was also analysed by using optical microscopy, SEM, and XRD. Developed particulate reinforced Al metal matrix composite gives improved hardness and compressive strength as compared to the unreinforced AA5052. The addition of 5 wt. % SiC particulates increases the density of AA5052.


Sign in / Sign up

Export Citation Format

Share Document