Mechanical properties of carbon particle mixed polylactic acid via fused deposition modeling

Author(s):  
Mohammed Abdul Imran ◽  
Kranthi Kumar Singam ◽  
S.P. Jani ◽  
Sudhakar Uppalapati
Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 976 ◽  
Author(s):  
Teng-Chun Yang

Wood fiber-reinforced polylactic acid (PLA) composites (WFRPCs) were used as a filament to manufacture the unidirectional WFRPC components by means of fused deposition modeling (FDM). The physico-mechanical properties of the WFRPC components printed at different extrusion temperatures (200, 210, 220, and 230 °C) were determined. The results revealed that most of the physical properties (moisture content, surface roughness, water absorption rate, and thickness swelling rate) of the printed WFRPC component were not significantly influenced by extrusion temperature, while its density and color difference increased as the extrusion temperature increased. Additionally, the tensile and flexural properties of the FDM-printed WFRPC component decreased when the extrusion temperature was more than 200 °C, whereas the compressive strength and internal bond strength increased by 15.1% and 24.3%, respectively, when the extrusion temperature was increased from 200 to 230 °C. Furthermore, scanning electronic microscopy (SEM) demonstrated that the fracture surface of the tensile component printed at a higher extrusion temperature exhibited a better compatibility at fiber/PLA interfaces and good adhesion between the extruded filament segments. These results indicate that the FDM printing process using different extrusion temperatures has a substantial impact on the surface color, density, and mechanical properties of the printed WFRPC component.


Author(s):  
Pravin R. Kubade ◽  
Hrushikesh B. Kulkarni ◽  
Vinayak C. Gavali

Additive Manufacturing or three-dimensional printing refers to a process of building lighter, stronger three-dimensional parts, manufactured layer by layer. Additive manufacturing uses a computer and CAD software which passes the program to the printer to build the desired shape. Metals, thermoplastic polymers, and ceramics are the preferred materials used for additive manufacturing. Fused deposition modeling is one additive manufacturing technique involving the use of thermoplastic polymer for creating desired shape. Carbon fibers can be added into polymer to strengthen the composite without adding additional weight. Present work deals with the manufacturing of Carbon fiber-reinforced Polylactic Acid composites prepared using fused deposition modeling. Mechanical and thermo-mechanical properties of composites are studied as per ASTM standards and using sophisticated instruments. It is observed that there is enhancement in thermo-mechanical properties of composites due to addition reinforcement which is discussed in detail.


2020 ◽  
Vol 22 (4) ◽  
pp. 895-908
Author(s):  
M. Ouhsti ◽  
B. El Haddadi ◽  
S. Belhouideg

Abstract3D polymer-based printers have become easily accessible to the public. Usually, the technology used by these 3D printers is Fused Deposition Modelling (FDM). The majority of these 3D printers mainly use acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) to fabricate 3D objects. In order for the printed parts to be useful for specific applications, the mechanical properties of the printed parts must be known. The aim of this study is to determine the tensile strength and elastic modulus of printed materials in polylactic acid (PLA) according to three important printing parameters such as deposition angle, extruder temperature and printing speed. The central composite design (CCD) was used to reduce the number of tensile test experiments. The obtained results show that the mechanical properties of printed parts depend on printing parameters. Empirical models relating response and process parameters are developed. The analysis of variance (ANOVA) was used to test the validity of models relating response and printing parameters. The optimal printing parameters are determined for the desired mechanical properties.


2016 ◽  
Vol 22 (2) ◽  
pp. 387-404 ◽  
Author(s):  
Jonathan Torres ◽  
Matthew Cole ◽  
Allen Owji ◽  
Zachary DeMastry ◽  
Ali P. Gordon

Purpose This paper aims to present the influences of several production variables on the mechanical properties of specimens manufactured using fused deposition modeling (FDM) with polylactic acid (PLA) as a media and relate the practical and experimental implications of these as related to stiffness, strength, ductility and generalized loading. Design/methodology/approach A two-factor-level Taguchi test matrix was defined to allow streamlined mechanical testing of several different fabrication settings using a reduced array of experiments. Specimens were manufactured and tested according to ASTM E8/D638 and E399/D5045 standards for tensile and fracture testing. After initial analysis of mechanical properties derived from mechanical tests, analysis of variance was used to infer optimized production variables for general use and for application/load-specific instances. Findings Production variables are determined to yield optimized mechanical properties under tensile and fracture-type loading as related to orientation of loading and fabrication. Practical implications The relation of production variables and their interactions and the manner in which they influence mechanical properties provide insight to the feasibility of using FDM for rapid manufacturing of components for experimental, commercial or consumer-level use. Originality/value This paper is the first report of research on the characterization of the mechanical properties of PLA coupons manufactured using FDM by the Taguchi method. The investigation is relevant both in commercial and consumer-level aspects, given both the currently increasing utilization of 3D printers for component production and the viability of PLA as a renewable, biocompatible material for use in structural applications.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 633
Author(s):  
Brândușa Ghiban ◽  
Nicoleta Elisabeta Pascu ◽  
Iulian Vasile Antoniac ◽  
Gabriel Jiga ◽  
Claudia Milea ◽  
...  

Polylactic acid (PLA) is one of the most extensively used biodegradable aliphatic polyester produced from renewable resources, such as corn starch. Due to its qualities, PLA is a leading biomaterial for numerous applications in medicine as well as in industry, replacing conventional petrochemical–based polymers. The purpose of this paper is to highlight the fracture behavior of pure PLA specimens in comparison with PLA particle insertions, (copper, aluminum and Graphene), after evaluation the mechanical properties, as well as the influence of filament angle deposition on these properties. In order to check if the filling density of the specimen influences the ultimate tensile stress (UTS), three different filling percentages (60%, 80%, and 100%) have been chosen in the experimental tests. A hierarchy concerning elongation / fiber heights after tensile testing was done. So, the highest elongation values were for simple PLA (about 4.1%), followed by PLA + Al insertion (3.2%–4%), PLA + graphene insertion (2.6%–4%) and the lowest values being for PLA with copper insertion (1.8%–2.7%). Regarding the fiber heights after fracture, the hierarchy was: the highest values was for PLA, then PLA + Al, PLA + grapheme and PLA+ Cu. Finally, a correlation between fracture surfaces appearance and mechanical properties were established, being formulated the mechanism of fracture in according with filament angle deposition. Also, it was proposed a new method of evaluation of the fractured surface by measuring the dimensions of the filaments after printing Fused Deposition Modeling (FDM) and tensile testing.


Sign in / Sign up

Export Citation Format

Share Document