Arginase-1 expressing microglia in close proximity to motor neurons were increased early in disease progression in canine degenerative myelopathy, a model of amyotrophic lateral sclerosis

2018 ◽  
Vol 88 ◽  
pp. 148-157 ◽  
Author(s):  
Christine M. Toedebusch ◽  
John C. Snyder ◽  
Maria R. Jones ◽  
Virginia B. Garcia ◽  
Gayle C. Johnson ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaojiao Xu ◽  
Dingding Shen ◽  
Yining Gao ◽  
Qinming Zhou ◽  
You Ni ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving both upper and lower motor neurons, leading to paralysis and eventually death. Symptomatic treatments such as inhibition of salivation, alleviation of muscle cramps, and relief of spasticity and pain still play an important role in enhancing the quality of life. To date, riluzole and edaravone are the only two drugs approved by the Food and Drug Administration for the treatment of ALS in a few countries. While there is adequate consensus on the modest efficacy of riluzole, there are still open questions concerning the efficacy of edaravone in slowing the disease progression. Therefore, identification of novel therapeutic strategies is urgently needed. Impaired autophagic process plays a critical role in ALS pathogenesis. In this review, we focus on therapies modulating autophagy in the context of ALS. Furthermore, stem cell therapies, gene therapies, and newly-developed biomaterials have great potentials in alleviating neurodegeneration, which might halt the disease progression. In this review, we will summarize the current and prospective therapies for ALS.


2015 ◽  
Vol 135 (1) ◽  
pp. 109-124 ◽  
Author(s):  
Massimo Tortarolo ◽  
Antonio Vallarola ◽  
Dario Lidonnici ◽  
Elisa Battaglia ◽  
Francesco Gensano ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-5
Author(s):  
David Czell ◽  
Christoph Neuwirth ◽  
Markus Weber ◽  
Sabine Sartoretti-Schefer ◽  
Andreas Gutzeit ◽  
...  

Objective. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with involvement of the upper and lower motor neurons. Since the loss of fine motor skills is one of the earliest signs of ALS, the hypothesis was tested if the nine hole PEG test (NHPT) and transcranial magnet stimulation (TMS) with resting-motor threshold (RMT) could be useful in monitoring disease progression. Methods. We examined 28 ALS patients and 27 age-matched healthy controls. ALS patients and healthy controls underwent the nine hole peg test (NHPT) and TMS with RMT. Measurements in patients were repeated after three and six months. Results. At baseline, the median NHPT durations were 1,4-fold longer (p<0.001), and TMS scores showed a significant 0.8-fold smaller score in ALS patients compared with healthy controls (p<0.001). The comparison of three and six months versus baseline revealed significant differences for NHPT durations and ALSFRS-R in patients, whereas TMS scores did not significantly differ in the patients. Conclusion. NHPT seems to be a good tool to evaluate dexterity of the hand and the progression of the disease in ALS patients. TMS RMT to the hand muscles seems to be poorly qualified to evaluate the dexterity of the hand function and the course of the disease.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Dan Krakora ◽  
Corey Macrander ◽  
Masatoshi Suzuki

Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by the progressive degeneration of upper and lower motor neurons (MNs), leading to muscular atrophy and eventual respiratory failure. ALS research has primarily focused on mechanisms regarding MN cell death; however, degenerative processes in the skeletal muscle, particularly involving neuromuscular junctions (NMJs), are observed in the early stages of and throughout disease progression. According to the “dying-back” hypothesis, NMJ degeneration may not only precede, but actively cause upper and lower MN loss. The importance of NMJ pathology has relatively received little attention in ALS, possibly because compensatory mechanisms mask NMJ loss for prolonged periods. Many mechanisms explaining NMJ degeneration have been proposed such as the disruption of anterograde/retrograde axonal transport, irregular cellular metabolism, and changes in muscle gene and protein expression. Neurotrophic factors, which are known to have neuroprotective and regenerative properties, have been intensely investigated for their therapeutic potential in both the preclinical and clinical setting. Additional research should focus on the potential of preserving NMJs in order to delay or prevent disease progression


2017 ◽  
Author(s):  
Alessandro Zandonà ◽  
Matilde Francescon ◽  
Maya Bronfeld ◽  
Andrea Calvo ◽  
Adriano Chiò ◽  
...  

Background. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily affecting upper and lower motor neurons in the brain and spinal cord. The heterogeneity in the course of ALS clinical progression and ultimately survival, coupled with the rarity of this disease, make predicting disease outcome at the level of the individual patient very challenging. Besides, stratification of ALS patients has been known for years as a question of great importance to clinical practice, research and drug development. Methods. In this work, we present a Dynamic Bayesian Network (DBN) model of ALS progression to detect probabilistic relationships among variables included in the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT), which provides records of over 10,700 patients from different clinical trials, and with over 2,869,973 longitudinally collected data measurements. Results. Our model unravels new dependencies among clinical variables in relation to ALS progression, such as the influence of basophil count and creatine kinase on patients’ clinical status and the respiratory functional state, respectively. Furthermore, it provided an indication of ALS temporal evolution, in terms of the most probable disease trajectories across time at the level of both patient population and individual patient. Conclusions. The risk factors identified by out DBN model could allow patients' stratification based on velocity of disease progression and a sensitivity analysis on this latter in response to changes in input variables, i.e. variables measured at diagnosis.


2017 ◽  
Author(s):  
Alessandro Zandonà ◽  
Matilde Francescon ◽  
Maya Bronfeld ◽  
Andrea Calvo ◽  
Adriano Chiò ◽  
...  

Background. Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily affecting upper and lower motor neurons in the brain and spinal cord. The heterogeneity in the course of ALS clinical progression and ultimately survival, coupled with the rarity of this disease, make predicting disease outcome at the level of the individual patient very challenging. Besides, stratification of ALS patients has been known for years as a question of great importance to clinical practice, research and drug development. Methods. In this work, we present a Dynamic Bayesian Network (DBN) model of ALS progression to detect probabilistic relationships among variables included in the Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT), which provides records of over 10,700 patients from different clinical trials, and with over 2,869,973 longitudinally collected data measurements. Results. Our model unravels new dependencies among clinical variables in relation to ALS progression, such as the influence of basophil count and creatine kinase on patients’ clinical status and the respiratory functional state, respectively. Furthermore, it provided an indication of ALS temporal evolution, in terms of the most probable disease trajectories across time at the level of both patient population and individual patient. Conclusions. The risk factors identified by out DBN model could allow patients' stratification based on velocity of disease progression and a sensitivity analysis on this latter in response to changes in input variables, i.e. variables measured at diagnosis.


2020 ◽  
Vol 13 ◽  
Author(s):  
Mamtaj Alam ◽  
Rajeshwar Kumar Yadav ◽  
Elizabeth Minj ◽  
Aarti Tiwari ◽  
Sidharth Mehan

: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) characterised by the death of upper and lower motor neurons (corticospinal tract) in the motor cortex, basal ganglia, brain stem, and spinal cord. The patient experiences the sign and symptoms between 55 to 75 years of age included impaired motor movement, difficulty in speaking and swallowing, grip loss, muscle atrophy, spasticity and sometimes associated with memory and cognitive impairments. Median survival is 3 to 5 years after diagnosis and 5 to 10% beyond 10 years of age. The limited intervention of pharmacologically active compounds that are used clinically is majorly associated with the narrow therapeutic index. Pre-clinically established experimental models where neurotoxin methyl mercury mimics the ALS like behavioural and neurochemical alterations in rodents associated with neuronal mitochondrial dysfunctions and downregulation of adenyl cyclase mediated cAMP/CREB is the main pathological hallmark for the progression of ALS in central as well in the peripheral nervous system. Despite the considerable investigation into neuroprotection, it still constrains treatment choices to strong care and organization of ALS complications. Therefore, current review specially targeted in the investigation of clinical and pre-clinical features available for ALS to understand the pathogenic mechanisms and to explore the pharmacological interventions associated with up-regulation of intracellular adenyl cyclase/cAMP/CREB and mitochondrial-ETC coenzyme-Q10 activation as a future drug target in the amelioration of ALS mediated motor neuronal dysfunctions.


2020 ◽  
Vol 17 (3) ◽  
pp. 275-285 ◽  
Author(s):  
Si Chen ◽  
Qiao Liao ◽  
Ke Lu ◽  
Jinxia Zhou ◽  
Cao Huang ◽  
...  

Background: Amyotrophic lateral sclerosis (ALS) is a neurological disorder clinically characterized by motor system dysfunction, with intraneuronal accumulation of the TAR DNAbinding protein 43 (TDP-43) being a pathological hallmark. Riluzole is a primarily prescribed medicine for ALS patients, while its therapeutical efficacy appears limited. TDP-43 transgenic mice are existing animal models for mechanistic/translational research into ALS. Methods: We developed a transgenic rat model of ALS expressing a mutant human TDP-43 transgene (TDP-43M337V) and evaluated the therapeutic effect of Riluzole on this model. Relative to control, rats with TDP-43M337V expression promoted by the neurofilament heavy subunit (NEF) gene or specifically in motor neurons promoted by the choline acetyltransferase (ChAT) gene showed progressive worsening of mobility and grip strength, along with loss of motor neurons, microglial activation, and intraneuronal accumulation of TDP-43 and ubiquitin aggregations in the spinal cord. Results: Compared to vehicle control, intragastric administration of Riluzole (30 mg/kg/d) did not mitigate the behavioral deficits nor alter the neuropathologies in the transgenics. Conclusion: These findings indicate that transgenic rats recapitulate the basic neurological and neuropathological characteristics of human ALS, while Riluzole treatment can not halt the development of the behavioral and histopathological phenotypes in this new transgenic rodent model of ALS.


Sign in / Sign up

Export Citation Format

Share Document