Physicochemical properties and sensory characteristics of reduced-fat frankfurters with pork back fat replaced by dietary fiber extracted from makgeolli lees

Meat Science ◽  
2014 ◽  
Vol 96 (2) ◽  
pp. 892-900 ◽  
Author(s):  
Yun-Sang Choi ◽  
Hyun-Wook Kim ◽  
Ko-Eun Hwang ◽  
Dong-Heon Song ◽  
Ji-Hun Choi ◽  
...  
2016 ◽  
Vol 36 (6) ◽  
pp. 799-806 ◽  
Author(s):  
Yun-Sang Choi ◽  
Jung-Min Sung ◽  
Jong-Dae Park ◽  
Ko-Eun Hwang ◽  
Cheol-Won Lee ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5317
Author(s):  
Sonja Simić ◽  
Jovana Petrović ◽  
Dušan Rakić ◽  
Biljana Pajin ◽  
Ivana Lončarević ◽  
...  

Sugar beet pulp (SBP) is a by-product of the sugar industry in which the dietary fiber content ranges from 73% to 80%. Compared to cereal fibers mainly used in biscuit production, sugar beet fibers are gluten free and have a perfect ratio of 2/3 insoluble fiber. In this work, sugar beet pulp was extruded with corn grits (ratios of corn grits to sugar beet pulp in extrudates were 85:15, 70:30, and 55:45), and the obtained sugar beet pulp extrudates (SBPEs) were used for improving the nutritional quality of cookies. The wheat flour in cookies was replaced with SBPEs in the amount of 5, 10, and 15%. The influence of three factors (the percentage of sugar beet pulp in the SBPEs, the size of the SBPE particles, and the percentage of wheat flour substituted with SBPEs) and their interactions on the nutritional quality of cookies, as well as their physical and sensory characteristics are examined using the Box–Behnken experimental design. The addition of extruded sugar beet pulp (SBPEs) significantly increased the amount of total dietary fiber and mineral matter of cookies. On the whole, the addition of SBPEs increased cookie hardness, but the hardness decreased with an increase in extrudate particle size. Sensory characteristics (except for the taste) were the most influenced by extrudate particle size.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 511
Author(s):  
Evelin Kivima ◽  
Kristel Tanilas ◽  
Kaie Martverk ◽  
Sirli Rosenvald ◽  
Loreida Timberg ◽  
...  

Thirty honey samples from different regions of Estonia were investigated to determine the chemical compositions, physicochemical properties, bioactive compounds, and sensory characteristics of typical honeys from a northern climate. The physicochemical parameters, such as electrical conductivity, moisture content, free acidity, hydroxymethylfurfural, diastase, and invertase activity were measured. The color was measured and expressed by L*-, a*-, and b*-coordinates. Sensory parameters were determined by using “fruity”, “floral”, “berry-like”, “herbal”, “woody”, “spicy”, “sweet”, and “animal-like” as the main odor and flavor attributes. The total polyphenol and flavonoid contents were in the range of 26.2–88.7 mg gallic acid equivalents (GAE) per 100 g and 1.9–6.4 mg quercetin equivalents (QE) per 100 g, respectively. The identified polyphenols showed the highest intensities of caffeic acid, coumaric acid, and abscisic acid and its derivatives. The protocatechuic acid intensity was highest in honeys containing traces of honeydew elements and of cinnamic acid and myricetin in heather honey. The water-soluble antioxidant values were 37.8–311.2 mg ascorbic acid equivalents (AAE) per 100 g and the lipid soluble antioxidant values were 14.4–60.7 mg Trolox equivalents (TE) per 100 g. The major amino acid in the analyzed honeys was proline, with variable values depending on the honey’s botanical source. Correlations were calculated based on the results obtained. It was revealed that the typical Estonian honey has floral, berry-like, sweet, and rather mild sensory characteristics. Most of the honeys lacked stronger spicy, woody, and animal-like attributes. The typical color of Estonian honey is quite light.


2009 ◽  
Vol 74 (8) ◽  
pp. C628-C636 ◽  
Author(s):  
Min Zhang ◽  
Yi Liang ◽  
Ying Pei ◽  
Weiwei Gao ◽  
Zesheng Zhang

2012 ◽  
Vol 234 (4) ◽  
pp. 617-625 ◽  
Author(s):  
Vanesa Benítez ◽  
Esperanza Mollá ◽  
María A. Martín-Cabrejas ◽  
Yolanda Aguilera ◽  
Francisco J. López-Andréu ◽  
...  

Nova Scientia ◽  
2020 ◽  
Vol 12 (24) ◽  
Author(s):  
Rey David Vargas Sánchez ◽  
Evelin Martínez Benavidez ◽  
Javier Hernández ◽  
Gastón Ramón Torrescano Urrutia ◽  
Armida Sánchez Escalante

In this study the effect of pollen source (mesquite and catclaw) on the sensory characteristics (appearance, color, aroma, taste, consistency and visible impurities), and physicochemical properties of raw propolis, and the phenolic content and biological activities of propolis extracts (PEs) was determined. The phenolic composition of PEs was determined by the total phenolic (TPC), flavone and flavonol (FFC), and flavanone and dihydroflavonol content (FDC). The individual phenolic components were analyzed by HPLC-DAD. The antioxidant activity was determined by the ferric-reducing power (FRAP) and free-radical scavenging activity (FRS). The antibacterial activity was evaluated against Gram-positive (Staphylococcus aureus and Listeria innocua) and Gram-negative (Echerichia coli and Salmonella thyphimurium) bacteria. The results showed that sensory characteristic and physicochemical properties of mesquite and catclaw propolis complied with international quality regulations. Fifteen phenolic compounds were identified, of which pinocembrin, naringenin, galangin, chrysin and quercetin were found a high concentration (> 3 mg/g). Mesquite propolis had the highest phenolic content (TFC and FDC), as well as antioxidant activity (> 2.5 mg Fe (II) equivalent/g; > 40% of DPPH radical inhibition) and antibacterial activity against Gram-positive bacterias in the order S. aureus > L. innocua (> 50% of inhibition for both bacterias at 500 µg/mL). These results indicating that pollen source affect the sensory characteristics and physicochemical properties of propolis, as well as the biological activity of their extracts.


Sign in / Sign up

Export Citation Format

Share Document